Skip to main content
Top
Published in: The International Journal of Advanced Manufacturing Technology 1-2/2021

15-06-2021 | ORIGINAL ARTICLE

Simulation of the chip morphology together with its evolution in machining of Inconel 718 by considering widely spread cutting speed

Authors: Chun Liu, Min Wan, Yun Yang

Published in: The International Journal of Advanced Manufacturing Technology | Issue 1-2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article establishes a finite element method (FEM) model to characterize and classify the chip morphologies of Inconel 718, which tends to form shear localized chips. Orthogonal cutting simulations in a wide range of speeds with three uncut chip thicknesses are carried out to model the plastic deformation of Inconel 718 and thus the formation of the serrated chips by utilizing the Johnson-Cook (JC) constitutive law with the criterion of the accumulated plastic strain. Evolution trends of the chip deformation results are of the main interest and focus is placed on the chip segmentation. Simulation results show that Inconel 718 exhibits a chip pattern transition from the continuously smooth form to the regularly serrated form with the increase of cutting speed. However, the disappearance of chip serration is also observed at still higher cutting speeds. The primary shear angle and the segment inclination finally reach the same asymptotic value of 45. The shear band spacing drops significantly before the two plateau regions are achieved. Apart from these, the scatter plot of specific cutting force tends to be a concave shape, while the scatter plot of chip segmentation degree tends to be a convex shape. Meanwhile, the chip thickness ratio approaches an asymptotic value, and the average velocity of chip sliding on the tool rake face almost equals the cutting speed. At the same time, the simulation results are compared to the results by experiments or simulations in the published literatures. Moreover, the FEM model is validated by comparing the chip morphologies from the experiments and the simulations, respectively. The proposed work is fundamental for not only increasing understandings of the metal cutting process of Inconel 718, but also hypothetically providing a framework of the chip generation under the cutting speed from low to high range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Thellaputta GR, Chandra PS, Rao CSP (2017) Machinability of nickel based superalloys: A review. Mater Today Proc 4(2):3712–3721CrossRef Thellaputta GR, Chandra PS, Rao CSP (2017) Machinability of nickel based superalloys: A review. Mater Today Proc 4(2):3712–3721CrossRef
2.
go back to reference Rahman M, Seah WKH, Teo TT (1997) The machinability of Inconel 718. J Mater Process Technol 63(1):199–204CrossRef Rahman M, Seah WKH, Teo TT (1997) The machinability of Inconel 718. J Mater Process Technol 63(1):199–204CrossRef
3.
go back to reference Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15– 28CrossRef Pawade RS, Joshi SS, Brahmankar PK (2008) Effect of machining parameters and cutting edge geometry on surface integrity of high-speed turned Inconel 718. Int J Mach Tools Manuf 48(1):15– 28CrossRef
4.
go back to reference Vrabel M, Eckstein M, Mankova I (2018) Analysis of the metallography parameters and residual stress induced when producing bolt holes in Inconel 718 alloy. Int J Adv Manuf Technol 96(9-12):4353–4366CrossRef Vrabel M, Eckstein M, Mankova I (2018) Analysis of the metallography parameters and residual stress induced when producing bolt holes in Inconel 718 alloy. Int J Adv Manuf Technol 96(9-12):4353–4366CrossRef
5.
go back to reference Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12-13):1353–1367CrossRef Ezugwu EO (2005) Key improvements in the machining of difficult-to-cut aerospace superalloys. Int J Mach Tools Manuf 45(12-13):1353–1367CrossRef
6.
go back to reference Schulz H, Moriwaki T (1992) High-speed machining. CIRP Ann Manuf Technol 41(2):637–643CrossRef Schulz H, Moriwaki T (1992) High-speed machining. CIRP Ann Manuf Technol 41(2):637–643CrossRef
7.
go back to reference Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009a) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Des 30(5):1718–1725CrossRef Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009a) Study on the machinability characteristics of superalloy Inconel 718 during high speed turning. Mater Des 30(5):1718–1725CrossRef
8.
go back to reference Sharman ARC, Hughes JI, Ridgway K (2004) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414CrossRef Sharman ARC, Hughes JI, Ridgway K (2004) Workpiece surface integrity and tool life issues when turning Inconel 718 nickel based superalloy. Mach Sci Technol 8(3):399–414CrossRef
9.
go back to reference Liu C, Wan M, Zhang WH, Yang Y (2021) Chip formation mechanism of Inconel 718: a review of models and approaches. Chinese J Mechan Eng 34(1):34–49CrossRef Liu C, Wan M, Zhang WH, Yang Y (2021) Chip formation mechanism of Inconel 718: a review of models and approaches. Chinese J Mechan Eng 34(1):34–49CrossRef
10.
go back to reference Wang B, Liu ZQ, Yang QB (2013) Investigations of yield stress, fracture toughness, and energy distribution in high speed orthogonal cutting. Int J Mach Tools Manuf 73:1–8CrossRef Wang B, Liu ZQ, Yang QB (2013) Investigations of yield stress, fracture toughness, and energy distribution in high speed orthogonal cutting. Int J Mach Tools Manuf 73:1–8CrossRef
11.
go back to reference Sutter G, List G (2013) Very high speed cutting of Ti-6Al-4V titanium alloy - change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43CrossRef Sutter G, List G (2013) Very high speed cutting of Ti-6Al-4V titanium alloy - change in morphology and mechanism of chip formation. Int J Mach Tools Manuf 66:37–43CrossRef
12.
go back to reference Davies MA, Chou Y, Evans CJ (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. CIRP Ann 45(1):77–82CrossRef Davies MA, Chou Y, Evans CJ (1996) On chip morphology, tool wear and cutting mechanics in finish hard turning. CIRP Ann 45(1):77–82CrossRef
13.
go back to reference Tay AO, Stevenson MG, de Vahl Davis G (1974) Using the finite element method to determine temperature distributions in orthogonal machining. Proc Instit Mechan Eng 188(1):627– 638CrossRef Tay AO, Stevenson MG, de Vahl Davis G (1974) Using the finite element method to determine temperature distributions in orthogonal machining. Proc Instit Mechan Eng 188(1):627– 638CrossRef
14.
go back to reference Ozel T, Llanos I, Soriano J, Arrazola PJ (2011) 3D finite element modelling of chip formation process for machining Inconel 718: comparison of FE software predictions. Machin Sci Technol 15(1):21–46CrossRef Ozel T, Llanos I, Soriano J, Arrazola PJ (2011) 3D finite element modelling of chip formation process for machining Inconel 718: comparison of FE software predictions. Machin Sci Technol 15(1):21–46CrossRef
15.
go back to reference Semiatin SL, Rao SB (1983) Shear localization during metal cutting. Mater Sci Eng 61 (2):185–192CrossRef Semiatin SL, Rao SB (1983) Shear localization during metal cutting. Mater Sci Eng 61 (2):185–192CrossRef
16.
go back to reference Li GH, Wang MJ, Duan CZ (2009) Adiabatic shear critical condition in the high-speed cutting. J Mater Process Technol 209(3):1362–1367CrossRef Li GH, Wang MJ, Duan CZ (2009) Adiabatic shear critical condition in the high-speed cutting. J Mater Process Technol 209(3):1362–1367CrossRef
17.
go back to reference Jawahir IS, van Luttervelt CA (1993) Recent developments in chip control research and applications. CIRP Ann Manuf Technol 42(2):659–693CrossRef Jawahir IS, van Luttervelt CA (1993) Recent developments in chip control research and applications. CIRP Ann Manuf Technol 42(2):659–693CrossRef
18.
go back to reference Timothy SP, Hutchings IM (1985) The structure of adiabatic shear bands in a titanium alloy. Acta Metall 33(4):667–676CrossRef Timothy SP, Hutchings IM (1985) The structure of adiabatic shear bands in a titanium alloy. Acta Metall 33(4):667–676CrossRef
19.
go back to reference Komanduri R, Schroeder TA (1986) On shear instability in machining a nickel-iron base superalloy. J Eng Indust 108(2):93–100CrossRef Komanduri R, Schroeder TA (1986) On shear instability in machining a nickel-iron base superalloy. J Eng Indust 108(2):93–100CrossRef
20.
go back to reference Wright TW, Perzyna P (2003) Physics and mathematics of adiabatic shear bands. Appl Mech Rev 56(3):B41–B43CrossRef Wright TW, Perzyna P (2003) Physics and mathematics of adiabatic shear bands. Appl Mech Rev 56(3):B41–B43CrossRef
21.
go back to reference Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15 (1):22–32CrossRef Zener C, Hollomon JH (1944) Effect of strain rate upon plastic flow of steel. J Appl Phys 15 (1):22–32CrossRef
22.
go back to reference Sutter G, Molinari A, List G, Bi X (2012) Chip flow and scaling laws in high speed metal cutting. J Manuf Sci Eng 134(2):021,005CrossRef Sutter G, Molinari A, List G, Bi X (2012) Chip flow and scaling laws in high speed metal cutting. J Manuf Sci Eng 134(2):021,005CrossRef
23.
go back to reference Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef
24.
go back to reference Ye GG, Chen Y, Xue SF, Dai LH (2014) Critical cutting speed for onset of serrated chip flow in high speed machining. Int J Mach Tools Manuf 86:18–33CrossRef Ye GG, Chen Y, Xue SF, Dai LH (2014) Critical cutting speed for onset of serrated chip flow in high speed machining. Int J Mach Tools Manuf 86:18–33CrossRef
25.
go back to reference Atlati S, Haddag B, Nouari M, Zenasni M (2011) Analysis of a new segmentation intensity ratio “SIR” to characterize the chip segmentation process in machining ductile metals. Int J Mach Tools Manuf 51 (9):687–700CrossRef Atlati S, Haddag B, Nouari M, Zenasni M (2011) Analysis of a new segmentation intensity ratio “SIR” to characterize the chip segmentation process in machining ductile metals. Int J Mach Tools Manuf 51 (9):687–700CrossRef
26.
go back to reference Yong Y, Ying-lin K, Hui-yue D (2006) Finite element simulation of high-speed cutting. Acta Aeronauticaet Astronautica Sinica 27(3):531–535 Yong Y, Ying-lin K, Hui-yue D (2006) Finite element simulation of high-speed cutting. Acta Aeronauticaet Astronautica Sinica 27(3):531–535
27.
go back to reference Komvopoulos K, Erpenbeck SA (1991) Finite element modeling of orthogonal metal cutting. J Eng Indust 113(3):253–267CrossRef Komvopoulos K, Erpenbeck SA (1991) Finite element modeling of orthogonal metal cutting. J Eng Indust 113(3):253–267CrossRef
28.
go back to reference Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773– 781CrossRef Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6(6):773– 781CrossRef
29.
go back to reference Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–89CrossRef Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46(1):81–89CrossRef
30.
go back to reference Strenkowski JS, Carroll JT (1985) A finite element model of orthogonal metal cutting. J Eng Indust 107(4):349–354CrossRef Strenkowski JS, Carroll JT (1985) A finite element model of orthogonal metal cutting. J Eng Indust 107(4):349–354CrossRef
31.
go back to reference Rusinek A, Zaera R (2007) Finite element simulation of steel ring fragmentation under radial expansion. Int J Impact Eng 34(4):799–822CrossRef Rusinek A, Zaera R (2007) Finite element simulation of steel ring fragmentation under radial expansion. Int J Impact Eng 34(4):799–822CrossRef
32.
go back to reference Rodriguez-Martinez JA, Vadillo G, Fernandez-Saez J, Molinari A (2013) Identification of the critical wavelength responsible for the fragmentation of ductile rings expanding at very high strain rates. J Mechan Phys Solids 61(6):1357–1376MathSciNetCrossRef Rodriguez-Martinez JA, Vadillo G, Fernandez-Saez J, Molinari A (2013) Identification of the critical wavelength responsible for the fragmentation of ductile rings expanding at very high strain rates. J Mechan Phys Solids 61(6):1357–1376MathSciNetCrossRef
33.
go back to reference Molinari A, Soldani X, Miguelez MH (2013) Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J Mechan Phys Solids 61(11):2331–2359CrossRef Molinari A, Soldani X, Miguelez MH (2013) Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J Mechan Phys Solids 61(11):2331–2359CrossRef
34.
go back to reference Molinari A, Cheriguene R, Miguelez H (2011) Numerical and analytical modeling of orthogonal cutting: The link between local variables and global contact characteristics. Int J Mech Sci 53(3):183–206CrossRef Molinari A, Cheriguene R, Miguelez H (2011) Numerical and analytical modeling of orthogonal cutting: The link between local variables and global contact characteristics. Int J Mech Sci 53(3):183–206CrossRef
35.
go back to reference Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186(1-3):66–76MATHCrossRef Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186(1-3):66–76MATHCrossRef
36.
go back to reference Soldani X, Santiuste C, Munoz-Sanchez A, Miguelez MH (2011) Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Compos A: Appl Sci Manuf 42 (9):1205–1216CrossRef Soldani X, Santiuste C, Munoz-Sanchez A, Miguelez MH (2011) Influence of tool geometry and numerical parameters when modeling orthogonal cutting of LFRP composites. Compos A: Appl Sci Manuf 42 (9):1205–1216CrossRef
37.
go back to reference Soldani X, Munoz-Sanchez A, Miguelez H, Molinari A (2010) Numerical modeling of segmentation phenomenon in orthogonal cutting. Proceedings of the 2nd CIRP International Conference Process Machine Interactions, Vancouver, Canada Soldani X, Munoz-Sanchez A, Miguelez H, Molinari A (2010) Numerical modeling of segmentation phenomenon in orthogonal cutting. Proceedings of the 2nd CIRP International Conference Process Machine Interactions, Vancouver, Canada
38.
go back to reference Komanduri R, Brown RH (1981) On the mechanics of chip segmentation in machining. J Eng Indust 103(1):33–51CrossRef Komanduri R, Brown RH (1981) On the mechanics of chip segmentation in machining. J Eng Indust 103(1):33–51CrossRef
39.
go back to reference Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121(2):163–172CrossRef Vyas A, Shaw MC (1999) Mechanics of saw-tooth chip formation in metal cutting. J Manuf Sci Eng 121(2):163–172CrossRef
40.
go back to reference Ozel T, Ulutan D (2013) Effects of machining parameters and tool geometry on serrated chip formation, specific forces and energies in orthogonal cutting of nickel-based super alloy Inconel 100. Proc Instit Mechan Eng Part B J Eng Manuf 228(7):673–686CrossRef Ozel T, Ulutan D (2013) Effects of machining parameters and tool geometry on serrated chip formation, specific forces and energies in orthogonal cutting of nickel-based super alloy Inconel 100. Proc Instit Mechan Eng Part B J Eng Manuf 228(7):673–686CrossRef
41.
go back to reference Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of ti-6al-4v: experiments and modeling. Int J Plast 18(4):443–459MATHCrossRef Molinari A, Musquar C, Sutter G (2002) Adiabatic shear banding in high speed machining of ti-6al-4v: experiments and modeling. Int J Plast 18(4):443–459MATHCrossRef
42.
go back to reference Wang B, Liu ZQ, Song QH, Wan Y, Ren XP (2020) An approach for reducing cutting energy consumption with ultra-high speed machining of super alloy Inconel 718. Int J Precis Eng Manuf - Green Technol 7:35–51CrossRef Wang B, Liu ZQ, Song QH, Wan Y, Ren XP (2020) An approach for reducing cutting energy consumption with ultra-high speed machining of super alloy Inconel 718. Int J Precis Eng Manuf - Green Technol 7:35–51CrossRef
43.
go back to reference Flom DG, Komanduri R, Lee M (1984) High-speed machining of metals. Annu Rev Mater Sci 14(1):231–278CrossRef Flom DG, Komanduri R, Lee M (1984) High-speed machining of metals. Annu Rev Mater Sci 14(1):231–278CrossRef
44.
go back to reference Merchant ME (1945) Mechanics of the metal cutting process. i. orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267– 275CrossRef Merchant ME (1945) Mechanics of the metal cutting process. i. orthogonal cutting and a type 2 chip. J Appl Phys 16(5):267– 275CrossRef
45.
go back to reference Sutter G (2005) Chip geometries during high-speed machining for orthogonal cutting conditions. Int J Mach Tools Manuf 45(6):719–726CrossRef Sutter G (2005) Chip geometries during high-speed machining for orthogonal cutting conditions. Int J Mach Tools Manuf 45(6):719–726CrossRef
46.
go back to reference Ye GG, Xue SF, Jiang MQ, Tong XH, Dai LH (2013) Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy. Int J Plast 40:39–55CrossRef Ye GG, Xue SF, Jiang MQ, Tong XH, Dai LH (2013) Modeling periodic adiabatic shear band evolution during high speed machining Ti-6Al-4V alloy. Int J Plast 40:39–55CrossRef
47.
go back to reference Cai SL, Dai LH (2014) Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining. J Mechan Phys Solids 73:84–102CrossRef Cai SL, Dai LH (2014) Suppression of repeated adiabatic shear banding by dynamic large strain extrusion machining. J Mechan Phys Solids 73:84–102CrossRef
48.
go back to reference Arunachalam RM, Mannan MA, Spowage AC (2004) Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int J Mach Tools Manuf 44(14):1481– 1491CrossRef Arunachalam RM, Mannan MA, Spowage AC (2004) Surface integrity when machining age hardened Inconel 718 with coated carbide cutting tools. Int J Mach Tools Manuf 44(14):1481– 1491CrossRef
49.
go back to reference Toenshoff HK, Winkleri H, Patzke M (1984) Chip formation at high-cutting speeds. American Society of Mechanical Engineers, Production Engineering Division Toenshoff HK, Winkleri H, Patzke M (1984) Chip formation at high-cutting speeds. American Society of Mechanical Engineers, Production Engineering Division
50.
go back to reference Bonnet-Lebouvier AS, Molinari A, Lipinski P (2002) Analysis of the dynamic propagation of adiabatic shear bands. Int J Solids Struct 39(16):4249–4269MATHCrossRef Bonnet-Lebouvier AS, Molinari A, Lipinski P (2002) Analysis of the dynamic propagation of adiabatic shear bands. Int J Solids Struct 39(16):4249–4269MATHCrossRef
51.
go back to reference Wright TW, Ockendon H (1996) A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int J Plast 12(7):927–934MATHCrossRef Wright TW, Ockendon H (1996) A scaling law for the effect of inertia on the formation of adiabatic shear bands. Int J Plast 12(7):927–934MATHCrossRef
53.
go back to reference Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti-6Al-4V alloy. Int J Mach Tools Manuf 41(7):1055–1070CrossRef Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti-6Al-4V alloy. Int J Mach Tools Manuf 41(7):1055–1070CrossRef
54.
go back to reference Duan CZ, Zhang LC (2012) Adiabatic shear banding in AISI 1045 steel during high speed machining: mechanisms of microstructural evolution. Mater Sci Eng A 532:111–119CrossRef Duan CZ, Zhang LC (2012) Adiabatic shear banding in AISI 1045 steel during high speed machining: mechanisms of microstructural evolution. Mater Sci Eng A 532:111–119CrossRef
55.
go back to reference Chuzhoy L, DeVor RE, Kapoor SG (2003) Machining simulation of ductile iron and its constituents, part 2:, numerical simulation and experimental validation of machining. J Manuf Sci Eng 125(2):192–201CrossRef Chuzhoy L, DeVor RE, Kapoor SG (2003) Machining simulation of ductile iron and its constituents, part 2:, numerical simulation and experimental validation of machining. J Manuf Sci Eng 125(2):192–201CrossRef
56.
go back to reference Cotterell M, Byrne G (2008) Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V. CIRP Ann Manuf Technol 57(1):93–96CrossRef Cotterell M, Byrne G (2008) Dynamics of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V. CIRP Ann Manuf Technol 57(1):93–96CrossRef
57.
go back to reference Yang QB, Wu Y, Liu D, Chen L, Lou DY, Zhai ZS, Liu ZQ (2016) Characteristics of serrated chip formation in high-speed machining of metallic materials. Int J Adv Manuf Technol 86 (5-8):1201–1206CrossRef Yang QB, Wu Y, Liu D, Chen L, Lou DY, Zhai ZS, Liu ZQ (2016) Characteristics of serrated chip formation in high-speed machining of metallic materials. Int J Adv Manuf Technol 86 (5-8):1201–1206CrossRef
58.
go back to reference Ye GG, Jiang MQ, Xue SF, Ma W, Dai LH (2018) On the instability of chip flow in high-speed machining. Mech Mater 116:104–119CrossRef Ye GG, Jiang MQ, Xue SF, Ma W, Dai LH (2018) On the instability of chip flow in high-speed machining. Mech Mater 116:104–119CrossRef
59.
go back to reference Larbi S (1990) Contribution à l’étude de l’usinage à grandes vitesses de matériaux métalliques par simulation sur un banc d’essai à base de barres de hopkinson thèse de Doctorat, Université de Nantes, France Larbi S (1990) Contribution à l’étude de l’usinage à grandes vitesses de matériaux métalliques par simulation sur un banc d’essai à base de barres de hopkinson thèse de Doctorat, Université de Nantes, France
60.
go back to reference Hoffmeister HW, Gente A, Weber TH (1999) Chip formation at titanium alloys under cutting speed of up to 100 m/s. In: 2nd International Conference on High Speed Machining, PTW Darmstadt University, pp 21–28 Hoffmeister HW, Gente A, Weber TH (1999) Chip formation at titanium alloys under cutting speed of up to 100 m/s. In: 2nd International Conference on High Speed Machining, PTW Darmstadt University, pp 21–28
61.
go back to reference Dudzinski D, Molinari A (1997) A modelling of cutting for viscoplastic materials. Int J Mech Sci 39(4):369–389MATHCrossRef Dudzinski D, Molinari A (1997) A modelling of cutting for viscoplastic materials. Int J Mech Sci 39(4):369–389MATHCrossRef
62.
go back to reference Recht RF (1985) A dynamic analysis of high-speed machining. J Eng Indust 107(4):309–315CrossRef Recht RF (1985) A dynamic analysis of high-speed machining. J Eng Indust 107(4):309–315CrossRef
63.
go back to reference Arndt G (1973) Ultra-high-speed machining: a review and an analysis of cutting forces. Proc Instit Mechan Eng 187(1):625–634CrossRef Arndt G (1973) Ultra-high-speed machining: a review and an analysis of cutting forces. Proc Instit Mechan Eng 187(1):625–634CrossRef
64.
go back to reference Klocke F, Raedt HW, Hoppe S (2001) 2D-FEM simulation of the orthogonal high speed cutting process. Machin Sci Technol An Int J 5(3):323–340CrossRef Klocke F, Raedt HW, Hoppe S (2001) 2D-FEM simulation of the orthogonal high speed cutting process. Machin Sci Technol An Int J 5(3):323–340CrossRef
65.
go back to reference Baker M (2006) Finite element simulation of high-speed cutting forces. J Mater Process Technol 176(1-3):117–126CrossRef Baker M (2006) Finite element simulation of high-speed cutting forces. J Mater Process Technol 176(1-3):117–126CrossRef
66.
go back to reference Schulz H, Abele E, Sahm A (2001) Material aspects of chip formation in HSC machining. CIRP Ann Manuf Technol 50(1):45–48CrossRef Schulz H, Abele E, Sahm A (2001) Material aspects of chip formation in HSC machining. CIRP Ann Manuf Technol 50(1):45–48CrossRef
67.
go back to reference Wang B, Liu ZQ (2014) Serrated chip formation mechanism based on mixed mode of ductile fracture and adiabatic shear. Proc Instit Mechan Eng Part B J Eng Manuf 228(2):181–190CrossRef Wang B, Liu ZQ (2014) Serrated chip formation mechanism based on mixed mode of ductile fracture and adiabatic shear. Proc Instit Mechan Eng Part B J Eng Manuf 228(2):181–190CrossRef
68.
go back to reference Su GS, Liu ZQ, Li L, Wang B (2015) Influences of chip serration on micro-topography of machined surface in high-speed cutting. Int J Mach Tools Manuf 89:202–207CrossRef Su GS, Liu ZQ, Li L, Wang B (2015) Influences of chip serration on micro-topography of machined surface in high-speed cutting. Int J Mach Tools Manuf 89:202–207CrossRef
69.
go back to reference Wang B, Liu ZQ (2015) Shear localization sensitivity analysis for Johnson-Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V. Simul Model Pract Theory 55:63–76CrossRef Wang B, Liu ZQ (2015) Shear localization sensitivity analysis for Johnson-Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V. Simul Model Pract Theory 55:63–76CrossRef
70.
go back to reference Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009b) A study on the parameters in high-speed turning of superalloy Inconel 718. Mater Manuf Process 24(4):497–503CrossRef Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009b) A study on the parameters in high-speed turning of superalloy Inconel 718. Mater Manuf Process 24(4):497–503CrossRef
71.
go back to reference Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76(1):15–34CrossRef Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76(1):15–34CrossRef
72.
go back to reference Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, CambridgeCrossRef Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, CambridgeCrossRef
Metadata
Title
Simulation of the chip morphology together with its evolution in machining of Inconel 718 by considering widely spread cutting speed
Authors
Chun Liu
Min Wan
Yun Yang
Publication date
15-06-2021
Publisher
Springer London
Published in
The International Journal of Advanced Manufacturing Technology / Issue 1-2/2021
Print ISSN: 0268-3768
Electronic ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-021-07346-2

Other articles of this Issue 1-2/2021

The International Journal of Advanced Manufacturing Technology 1-2/2021 Go to the issue

Premium Partners