Skip to main content
Top
Published in: International Journal of Plastics Technology 2/2016

01-12-2016 | Research Article

Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN

Authors: Rasmi Ranjan Behera, Ranjan Kr. Ghadai, Kanak Kalita, Simul Banerjee

Published in: International Journal of Plastics Technology | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Delamination in the drilling of polyester composite reinforced with chopped fiberglass is a problematic phenomenon. The material’s structural integrity is reduced by delamination, which results in poor tolerance during assembly and is a primary reason for decreased performance. Surface roughness is another important factor to consider when drilling fiber-reinforced plastics, as surface roughness causes failures by inducing high stresses in rivets and screws. Due to the random orientation of fiberglass and the non-homogenous, anisotropic properties of this material, an exact mathematical model has not been developed yet. Instead, modelling by artificial neural networks (ANNs) is adopted. In the present work, a multilayer perception ANN architecture has been developed with a feed-forward back-propagation algorithm. The algorithm uses material thickness, drill diameter, spindle speed, and feed rate as input parameters and delamination factor (Fd) at the entrance of the drilled hole, average surface roughness (Ra), and root mean square surface roughness (Rq) as the output parameters. The ANN model is then used to develop response surfaces to examine the influence of various input parameters on different response parameters. The developed model predicts that surface roughness increases with increases in feed rate and that a smaller-diameter drill will be advantageous in reducing surface roughness. A reduced feed rate will minimize delamination as well.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Guu YH, Hocheng H, Tai NH, Liu SY (2001) Effect of electrical discharge machining on the characteristics of carbon fibre reinforced carbon composites. J Mater Sci 36:2037–2043CrossRef Guu YH, Hocheng H, Tai NH, Liu SY (2001) Effect of electrical discharge machining on the characteristics of carbon fibre reinforced carbon composites. J Mater Sci 36:2037–2043CrossRef
2.
go back to reference Callister WD (2002) Materials science and engineering: an introduction, 6th edn. Wiley, Mississauga Callister WD (2002) Materials science and engineering: an introduction, 6th edn. Wiley, Mississauga
3.
go back to reference Sonbaty EI, Khasaba UA, Machaly T (2004) Factors affecting the machinability of GFR/epoxy composites. Compos Struct 63:329–338CrossRef Sonbaty EI, Khasaba UA, Machaly T (2004) Factors affecting the machinability of GFR/epoxy composites. Compos Struct 63:329–338CrossRef
4.
go back to reference Capello E (2004) Workpiece damping and its effects on delamination damage in drilling thin composite laminates. J Mater Process Technol 148:186–195CrossRef Capello E (2004) Workpiece damping and its effects on delamination damage in drilling thin composite laminates. J Mater Process Technol 148:186–195CrossRef
5.
go back to reference Khashaba UA (2004) Delamination in drilling GFR-thermoset composites. Compos Struct 63:313–327CrossRef Khashaba UA (2004) Delamination in drilling GFR-thermoset composites. Compos Struct 63:313–327CrossRef
6.
go back to reference Abrao AM, Rubio JC, Faria PE, Davim JP (2008) The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic. Mater Des 29:508–513CrossRef Abrao AM, Rubio JC, Faria PE, Davim JP (2008) The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic. Mater Des 29:508–513CrossRef
7.
go back to reference Velayudham A, Krishnamurty R (2007) Effect of point geometry and their influence on thrust force and delamination in drilling of polymeric composites. J Mater Process Technol 185:204–209CrossRef Velayudham A, Krishnamurty R (2007) Effect of point geometry and their influence on thrust force and delamination in drilling of polymeric composites. J Mater Process Technol 185:204–209CrossRef
8.
go back to reference Rubio JC, Abrao AM, Faria PE, Correia AE, Davim JP (2008) Effects of high speed in drilling of glass fiber reinforced plastic: evaluation of the delamination factor. Int J Mach Tools Manuf 48:715–720CrossRef Rubio JC, Abrao AM, Faria PE, Correia AE, Davim JP (2008) Effects of high speed in drilling of glass fiber reinforced plastic: evaluation of the delamination factor. Int J Mach Tools Manuf 48:715–720CrossRef
9.
go back to reference Hocheng H, Tsao C (2003) Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J Mater Process Technol 140:335–339CrossRef Hocheng H, Tsao C (2003) Comprehensive analysis of delamination in drilling of composite materials with various drill bits. J Mater Process Technol 140:335–339CrossRef
10.
go back to reference Palanikumar K, Prakash S, Shanmugam K (2008) Evaluation of delamination in drilling GFRP composites. Mater Manuf Process 23:858–864CrossRef Palanikumar K, Prakash S, Shanmugam K (2008) Evaluation of delamination in drilling GFRP composites. Mater Manuf Process 23:858–864CrossRef
11.
go back to reference Mohan NS, Kulkarni SM, Ramachandra A (2007) Delamination analysis in drilling process of glass fibre reinforced plastic (GFRP) composite materials. J Mater Process Technol 186:265–271CrossRef Mohan NS, Kulkarni SM, Ramachandra A (2007) Delamination analysis in drilling process of glass fibre reinforced plastic (GFRP) composite materials. J Mater Process Technol 186:265–271CrossRef
12.
go back to reference Babu J, Philip J (2014) Experimental studies on effect of process parameters on delamination in drilling GFRP composites using Taguchi method. Proc Mater Sci 6:1131–1142CrossRef Babu J, Philip J (2014) Experimental studies on effect of process parameters on delamination in drilling GFRP composites using Taguchi method. Proc Mater Sci 6:1131–1142CrossRef
13.
go back to reference Davim JP, Reis P, Antonio CC (2004) Drilling fibre reinforced plastics (FRPs) manufactured by hand lay-up: influence of matrix (Viapalvup 9731 and ATLAC 382-05). J Mater Process Technol 155:1828–1833CrossRef Davim JP, Reis P, Antonio CC (2004) Drilling fibre reinforced plastics (FRPs) manufactured by hand lay-up: influence of matrix (Viapalvup 9731 and ATLAC 382-05). J Mater Process Technol 155:1828–1833CrossRef
14.
go back to reference Davim JP, Reis P, Antonio CC (2004) Experimental study on drilling glass fibre reinforced plastics (GFRP) manufactured by hand lay-up. Compos Sci Technol 64:289–297CrossRef Davim JP, Reis P, Antonio CC (2004) Experimental study on drilling glass fibre reinforced plastics (GFRP) manufactured by hand lay-up. Compos Sci Technol 64:289–297CrossRef
15.
go back to reference Khashaba UA, Seif MA, Elhamid MA (2007) Drilling analysis of chopped composites. Compos Part A 38:61–70CrossRef Khashaba UA, Seif MA, Elhamid MA (2007) Drilling analysis of chopped composites. Compos Part A 38:61–70CrossRef
16.
go back to reference Haykin S (2007) Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall of India Private Ltd, New Delhi Haykin S (2007) Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall of India Private Ltd, New Delhi
17.
go back to reference Rajasekaran S, VijayalakshmiPai GA (2007) Neural networks, fuzzy logic, and genetic algorithms: synthesis and applications. Prentice-Hall of IndiaPrivate Ltd, New Delhi Rajasekaran S, VijayalakshmiPai GA (2007) Neural networks, fuzzy logic, and genetic algorithms: synthesis and applications. Prentice-Hall of IndiaPrivate Ltd, New Delhi
18.
go back to reference Himmel C, May G (1993) Advantages of plasma etch modeling using neural networks over statistical techniques. IEEE Trans Semicond Manuf 6:103–111CrossRef Himmel C, May G (1993) Advantages of plasma etch modeling using neural networks over statistical techniques. IEEE Trans Semicond Manuf 6:103–111CrossRef
19.
go back to reference Bezerra EM, Ancelotti AC, Pardini LC, Rocco JAFF, Iha K, Ribeiro CHC (2007) Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: analysis of the shear mechanical properties. Mater Sci Eng A 464:177–185CrossRef Bezerra EM, Ancelotti AC, Pardini LC, Rocco JAFF, Iha K, Ribeiro CHC (2007) Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: analysis of the shear mechanical properties. Mater Sci Eng A 464:177–185CrossRef
20.
go back to reference Hayajneh MT, Hassan AM, Mayyas AT (2009) Artificial neural network modelling of the drilling process of self-lubricated aluminium/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J Alloys Compd. doi:10.1016/j.jallcom.2008.11.155 Hayajneh MT, Hassan AM, Mayyas AT (2009) Artificial neural network modelling of the drilling process of self-lubricated aluminium/alumina/graphite hybrid composites synthesized by powder metallurgy technique. J Alloys Compd. doi:10.​1016/​j.​jallcom.​2008.​11.​155
21.
go back to reference Kadi H (2006) Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—a review. Compos Struct 73:1–23CrossRef Kadi H (2006) Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks—a review. Compos Struct 73:1–23CrossRef
22.
go back to reference Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrao AM, Davim JP (2008) Delamination analysis in high speed drilling of carbon fibre reinforced plastic (CFRP) using artificial neural network model. Mater Des. doi:10.1016/j.matdes.2008.03.014 Karnik SR, Gaitonde VN, Rubio JC, Correia AE, Abrao AM, Davim JP (2008) Delamination analysis in high speed drilling of carbon fibre reinforced plastic (CFRP) using artificial neural network model. Mater Des. doi:10.​1016/​j.​matdes.​2008.​03.​014
24.
go back to reference Hansda S, Banerjee S (2012) Multiple performance characteristics optimisation in drilling of glass fibre reinforced polyester composite at different weightage of performance by grey relational analysis. Int J Mach Mach Mater 2 12(1–2):14–27 Hansda S, Banerjee S (2012) Multiple performance characteristics optimisation in drilling of glass fibre reinforced polyester composite at different weightage of performance by grey relational analysis. Int J Mach Mach Mater 2 12(1–2):14–27
25.
go back to reference Hansda S, Banerjee S (2014) Optimizing multi characteristics in drilling of GFRP composite using utility concept with Taguchi’s approach. Proc Mater Sci 6:1476–1488CrossRef Hansda S, Banerjee S (2014) Optimizing multi characteristics in drilling of GFRP composite using utility concept with Taguchi’s approach. Proc Mater Sci 6:1476–1488CrossRef
27.
go back to reference Rajamurugan TV, Shanmugam K, Palanikumar K (2013) Analysis of delamination in drilling glass fiber reinforced polyester composites. Mater Des 45:80–87CrossRef Rajamurugan TV, Shanmugam K, Palanikumar K (2013) Analysis of delamination in drilling glass fiber reinforced polyester composites. Mater Des 45:80–87CrossRef
28.
go back to reference Mishra R et al (2010) Neural network approach for estimating the residual tensile strength after drilling in uni-directional glass fiber reinforced plastic laminates. Mater Des 31(6):2790–2795CrossRef Mishra R et al (2010) Neural network approach for estimating the residual tensile strength after drilling in uni-directional glass fiber reinforced plastic laminates. Mater Des 31(6):2790–2795CrossRef
29.
go back to reference Tsao CC (2008) Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. Int J Adv Manuf Technol 37:1061–1068CrossRef Tsao CC (2008) Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. Int J Adv Manuf Technol 37:1061–1068CrossRef
30.
go back to reference Abrao AM, Faria PE, Rubio JC, Reis P, Davim JP (2007) Drilling of fibre reinforced plastics: a review. J Mater Process Technol 186:1–7CrossRef Abrao AM, Faria PE, Rubio JC, Reis P, Davim JP (2007) Drilling of fibre reinforced plastics: a review. J Mater Process Technol 186:1–7CrossRef
32.
go back to reference Canakci A, Varol T, Ozsahin S (2015) Artificial neural network to predict the effect of heat treatment, reinforcement size, and volume fraction on AlCuMg alloy matrix composite properties fabricated by stir casting method. Int J Adv Manuf Technol 78(1–4):305–317CrossRef Canakci A, Varol T, Ozsahin S (2015) Artificial neural network to predict the effect of heat treatment, reinforcement size, and volume fraction on AlCuMg alloy matrix composite properties fabricated by stir casting method. Int J Adv Manuf Technol 78(1–4):305–317CrossRef
33.
go back to reference Satapathy A, Tarkes DP, Nayak NB (2010) Wear response prediction of TiO2-polyester composites using neural networks. Int J Plast Technol 14(1):24–29CrossRef Satapathy A, Tarkes DP, Nayak NB (2010) Wear response prediction of TiO2-polyester composites using neural networks. Int J Plast Technol 14(1):24–29CrossRef
34.
go back to reference Varol T, Canakci A, Ozsahin S (2015) Modeling of the prediction of densification behavior of powder metallurgy Al–Cu–Mg/B4C composites using artificial neural networks. Acta Metall Sin (English Letters) 28(2):182–195CrossRef Varol T, Canakci A, Ozsahin S (2015) Modeling of the prediction of densification behavior of powder metallurgy Al–Cu–Mg/B4C composites using artificial neural networks. Acta Metall Sin (English Letters) 28(2):182–195CrossRef
35.
go back to reference Khanlou HM et al (2015) Prediction and characterization of surface roughness using sandblasting and acid etching process on new non-toxic titanium biomaterial: adaptive-network-based fuzzy inference system. Neural Comput Appl 26(7):1751–1761CrossRef Khanlou HM et al (2015) Prediction and characterization of surface roughness using sandblasting and acid etching process on new non-toxic titanium biomaterial: adaptive-network-based fuzzy inference system. Neural Comput Appl 26(7):1751–1761CrossRef
36.
go back to reference Khanlou HM et al (2014) Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput Appl 25(3–4):767–777CrossRef Khanlou HM et al (2014) Prediction and optimization of electrospinning parameters for polymethyl methacrylate nanofiber fabrication using response surface methodology and artificial neural networks. Neural Comput Appl 25(3–4):767–777CrossRef
37.
go back to reference Sadollah A et al (2013) Prediction and optimization of stability parameters for titanium dioxide nanofluid using response surface methodology and artificial neural networks. Sci Eng Compos Mater 20(4):319–330CrossRef Sadollah A et al (2013) Prediction and optimization of stability parameters for titanium dioxide nanofluid using response surface methodology and artificial neural networks. Sci Eng Compos Mater 20(4):319–330CrossRef
38.
go back to reference Hemmatian H et al (2013) Optimization of laminate stacking sequence for minimizing weight and cost using elitist ant system optimization. Adv Eng Softw 57:8–18CrossRef Hemmatian H et al (2013) Optimization of laminate stacking sequence for minimizing weight and cost using elitist ant system optimization. Adv Eng Softw 57:8–18CrossRef
39.
go back to reference Kosko B (1994) Neural networks and fuzzy systems. Prentice-Hall of India Private Ltd, New Delhi Kosko B (1994) Neural networks and fuzzy systems. Prentice-Hall of India Private Ltd, New Delhi
40.
go back to reference Schalkoff RB (1997) Artificial neural networks. McGraw-Hill, New York Schalkoff RB (1997) Artificial neural networks. McGraw-Hill, New York
41.
go back to reference Vankanti VK, Ganta V (2014) Optimization of process parameters in drilling of GFRP composite using Taguchi method. J Mater Res Technol 3(1):35–41CrossRef Vankanti VK, Ganta V (2014) Optimization of process parameters in drilling of GFRP composite using Taguchi method. J Mater Res Technol 3(1):35–41CrossRef
Metadata
Title
Simultaneous prediction of delamination and surface roughness in drilling GFRP composite using ANN
Authors
Rasmi Ranjan Behera
Ranjan Kr. Ghadai
Kanak Kalita
Simul Banerjee
Publication date
01-12-2016
Publisher
Springer India
Published in
International Journal of Plastics Technology / Issue 2/2016
Print ISSN: 0972-656X
Electronic ISSN: 0975-072X
DOI
https://doi.org/10.1007/s12588-016-9163-2

Other articles of this Issue 2/2016

International Journal of Plastics Technology 2/2016 Go to the issue

Premium Partners