Skip to main content
Top

2018 | OriginalPaper | Chapter

Single-Stage Boost Inverter Topologies for Nanogrid Applications

Authors : P. Sriramalakshmi, V. T. Sreedevi

Published in: Advances in Smart Grid and Renewable Energy

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The non-conventional energy source-based distribution generation systems are suitable for low-power applications. These renewable energy system (RES)-based networks very often experience vast changes in the inverter output voltage, due to certain power quality issues like fluctuations, voltage sags, etc. Usually, a conventional boost converter is connected between the DC source and inverter to boost up the DC voltage when the available voltage is less than the required voltage for a particular application. If a highly boosted voltage is needed, the duty ratio of the converter needs to be fixed at maximum which creates serious reverse recovery issues. In order to overcome the aforementioned problems, single-stage power inverters are the best solution. Impedance-source inverter (ZSI), switched boost inverter (SBI), quasi-switched boost inverter (QSBI) are some of the single-stage step-up inverter topologies. These converters can either buck or boost the available DC input voltage, which provides better electromagnetic interference immunity and need not to be operated at extreme duty cycle, and it can produce both direct and alternating voltages from a single DC source. Because of all the above-mentioned advantages, single-stage boost inverters are appropriate for nanogrid applications. This paper reviews the features and operations of single-stage boost inverter topologies like ZSI, QZSI, basic SBI and family of QSBI topologies. The MATLAB simulation studies are carried out with the same design parameters for all the topologies, and the results are presented in detail including performance comparison.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kroposki, B., Pink, C., Deblasio, R., Thomas, H., Simoes, M., Sen, P.K.: Benefits of power electronic interfaces for distributed energy systems. IEEE Trans. Energy Convers. 25, 901–908 (2010)CrossRef Kroposki, B., Pink, C., Deblasio, R., Thomas, H., Simoes, M., Sen, P.K.: Benefits of power electronic interfaces for distributed energy systems. IEEE Trans. Energy Convers. 25, 901–908 (2010)CrossRef
2.
go back to reference Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics. Kluwer, Norwell, MA, USA (2001)CrossRef Erickson, R.W., Maksimovic, D.: Fundamentals of Power Electronics. Kluwer, Norwell, MA, USA (2001)CrossRef
3.
go back to reference Lazzarin, T.B., Baue, G.A.T.R., Barbi, I.: A control strategy for parallel operation of single-phase voltage source inverters: analysis, design and experimental results. IEEE Trans. Ind. Electron. 60, 2194–2204 (2013)CrossRef Lazzarin, T.B., Baue, G.A.T.R., Barbi, I.: A control strategy for parallel operation of single-phase voltage source inverters: analysis, design and experimental results. IEEE Trans. Ind. Electron. 60, 2194–2204 (2013)CrossRef
4.
go back to reference Sriramalakshmi, P., Sreedevi, V.T.: Modified PWM control methods of Z source inverter for drive applications. ARPN J. Eng. Appl. Sci. 10, 6932–6943 (2015) Sriramalakshmi, P., Sreedevi, V.T.: Modified PWM control methods of Z source inverter for drive applications. ARPN J. Eng. Appl. Sci. 10, 6932–6943 (2015)
5.
go back to reference Shen, M., Joseph, A., Wang, J., Peng, F.Z., Adams, D.J.: Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans. PE 22, 1453–1463 (2007) Shen, M., Joseph, A., Wang, J., Peng, F.Z., Adams, D.J.: Comparison of traditional inverters and Z-source inverter for fuel cell vehicles. IEEE Trans. PE 22, 1453–1463 (2007)
6.
7.
go back to reference Peng, F.Z.: Z-source Networks for Power Conversion. In: APEC 2008, pp. 1258–1265 (2008) Peng, F.Z.: Z-source Networks for Power Conversion. In: APEC 2008, pp. 1258–1265 (2008)
8.
go back to reference Ellabban, O., Mierlo, J.V., Lataire, P.: A DSP-based dual-loop peak DC-link voltage control strategy of the Z-source inverter. IEEE Trans. Power Electron. 27, 4088–4097 (2012)CrossRef Ellabban, O., Mierlo, J.V., Lataire, P.: A DSP-based dual-loop peak DC-link voltage control strategy of the Z-source inverter. IEEE Trans. Power Electron. 27, 4088–4097 (2012)CrossRef
9.
go back to reference Hanif, M., Basu, M., Gaughan, K.: Understanding the operation of a Z-source inverter for photovoltaic application with a design example. IET Power Electron 4, 278–287 (2011)CrossRef Hanif, M., Basu, M., Gaughan, K.: Understanding the operation of a Z-source inverter for photovoltaic application with a design example. IET Power Electron 4, 278–287 (2011)CrossRef
10.
go back to reference Liu, J.B., Hu, J.G., Xu, L.Y.: Dynamic modeling and analysis of Z-source converter-derivation of AC small signal model and design-oriented analysis. IEEE Trans. Power Electron. 22, 1786–1796 (2007)CrossRef Liu, J.B., Hu, J.G., Xu, L.Y.: Dynamic modeling and analysis of Z-source converter-derivation of AC small signal model and design-oriented analysis. IEEE Trans. Power Electron. 22, 1786–1796 (2007)CrossRef
11.
go back to reference Li, Y., Jiang, S., Cintron Rivera, G., Peng, F.Z.: Modelling and control of quasi z source inverter for distributed generation applications. IEEE Trans. Ind. Electron. 60 (2013) Li, Y., Jiang, S., Cintron Rivera, G., Peng, F.Z.: Modelling and control of quasi z source inverter for distributed generation applications. IEEE Trans. Ind. Electron. 60 (2013)
12.
go back to reference Liu, H., Liu, P., Zhang, Y.: Design and digital implementation of voltage and current mode control for the quasi-Z-source converters. IET Power Electron. 6, 990–998 (2013)CrossRef Liu, H., Liu, P., Zhang, Y.: Design and digital implementation of voltage and current mode control for the quasi-Z-source converters. IET Power Electron. 6, 990–998 (2013)CrossRef
13.
go back to reference Upadhyay, S., Ravindranath, A., Mishra, S., Joshi, A.: A Switched-Boost Topology for Renewable Power Application, pp. 758–762. IEEE IPEC 10 (2010) Upadhyay, S., Ravindranath, A., Mishra, S., Joshi, A.: A Switched-Boost Topology for Renewable Power Application, pp. 758–762. IEEE IPEC 10 (2010)
14.
go back to reference Mishra, S., Adda, R., Joshi, A.: Inverse Watkins-Johnson topology based inverter. IEEE Trans. Power Electron. 27, 1066–1070 (2012)CrossRef Mishra, S., Adda, R., Joshi, A.: Inverse Watkins-Johnson topology based inverter. IEEE Trans. Power Electron. 27, 1066–1070 (2012)CrossRef
15.
go back to reference Adda, R., Ray, O., Mishra, S., Joshi, A.: Synchronous-reference-frame based control of switched boost inverter for standalone dc nanogrid applications. IEEE Trans. Power Electron. 28, 1219–1233 (2013)CrossRef Adda, R., Ray, O., Mishra, S., Joshi, A.: Synchronous-reference-frame based control of switched boost inverter for standalone dc nanogrid applications. IEEE Trans. Power Electron. 28, 1219–1233 (2013)CrossRef
16.
go back to reference Ravindranath, A., Mishra, S., Joshi, A.: Analysis and PWM control of switched boost inverter. IEEE Trans. Ind. Electron. 60, 5593–5602 (2013)CrossRef Ravindranath, A., Mishra, S., Joshi, A.: Analysis and PWM control of switched boost inverter. IEEE Trans. Ind. Electron. 60, 5593–5602 (2013)CrossRef
17.
go back to reference Rajakaruna, U., Jayawickrama, L.: Steady-state analysis and designing impedance network of Z-source inverters. IEEE Trans. Ind. Electron. 57, 2483–2491 (2010)CrossRef Rajakaruna, U., Jayawickrama, L.: Steady-state analysis and designing impedance network of Z-source inverters. IEEE Trans. Ind. Electron. 57, 2483–2491 (2010)CrossRef
18.
go back to reference Nag, S.S., Mishra, S.: Current-fed switched inverter. IEEE Trans. Ind. Electron. 61, 4680–4690 (2014)CrossRef Nag, S.S., Mishra, S.: Current-fed switched inverter. IEEE Trans. Ind. Electron. 61, 4680–4690 (2014)CrossRef
19.
go back to reference Nguyen, M.-K., Le, T.-V., Park, S.-J., Lim, Y.-C.: A class of quasi-switched boost inverter. IEEE Trans. Ind. Electron. 62, 1526–1536 (2015)CrossRef Nguyen, M.-K., Le, T.-V., Park, S.-J., Lim, Y.-C.: A class of quasi-switched boost inverter. IEEE Trans. Ind. Electron. 62, 1526–1536 (2015)CrossRef
20.
go back to reference Loh, P.C., Vilathgamuwa, D., Lai, M.X., Chua, Li, Y.W.: Pulse-width modulation of Z-source inverters. IEEE Trans. Power Electron. 20, 1346–1355 (2005)CrossRef Loh, P.C., Vilathgamuwa, D., Lai, M.X., Chua, Li, Y.W.: Pulse-width modulation of Z-source inverters. IEEE Trans. Power Electron. 20, 1346–1355 (2005)CrossRef
Metadata
Title
Single-Stage Boost Inverter Topologies for Nanogrid Applications
Authors
P. Sriramalakshmi
V. T. Sreedevi
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4286-7_21