Skip to main content
Top

2018 | OriginalPaper | Chapter

Singular, Large-Scale Solutions in Local Stress-Constrained Topology Optimization

Authors : Dirk Munro, Albert Groenwold

Published in: Advances in Structural and Multidisciplinary Optimization

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the union of sequential approximate optimization (SAO) and the ‘simultaneous analysis and design’ (SAND) formulation of the local stress-constrained topology optimization problem is delineated. The method is a standard structural optimization approach based on strictly convex and separable approximate subproblems, except for a straight-forward extension to include nonlinear equality constraints. The reason is, unlike conventional ‘nested analysis and design’ (NAND) methods, the finite element equilibrium equations are retained in the optimization problem as a set of nonlinear equality constraints. This implies that the state variables—i.e., the displacements—are primal optimization variables alongside the material-density variables. Because all optimization variables are independent, the computational cost and the dense coupling which is often consequential to nested formulations and calculation of the associated sensitivity derivatives, reduces to the manipulation of simple and sparse partial derivatives. Moreover, the equilibrium constraints may be violated up to the point of convergence, and, because the global stiffness matrix is not inverted per se, the material-density variables may take on a value of zero (0) exactly on the lower bound. The decoupling of the design and state variables on the one hand, and the exact representation of void material on the other, permits convergence to the singular optima which are typically not available in nested formulations without resorting to constraint relaxation techniques. Finally, numerical experiments on a simple benchmark problem indicates that high levels of computational efficiency may be achieved.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
In practice this should probably be accompanied with a global optimization procedure [10].
 
2
The term ‘SAO’ usually implies the use of dual methods for solving the approximate subproblems, specifically the dual of Falk [29], but nowadays Lagrange-Newton diagonal quadratic subproblems in combination with primal-dual interior-point subsolvers are considered superior [27, 30, 31].
 
3
We follow the development by Rao [42].
 
4
The ILOG CPLEX Barrier QP optimizer [44] is employed as subsolver. The computational platform is the Rhasatsha HPC [45]. No more than 6 parallel processors were employed on an individual subproblem.
 
Literature
1.
go back to reference Arora, J.S., Wang, Q.: Review of formulations for structural and mechanical system optimization. Struct. Multi. Optim. 30(4), 251–272 (2005)MathSciNetCrossRefMATH Arora, J.S., Wang, Q.: Review of formulations for structural and mechanical system optimization. Struct. Multi. Optim. 30(4), 251–272 (2005)MathSciNetCrossRefMATH
2.
go back to reference Wang, Q., Arora, J.S.: Optimization of large-scale truss structures using sparse SAND formulations. Int. J. Numer. Meth. Eng. 69(2), 390–407 (2007)CrossRefMATH Wang, Q., Arora, J.S.: Optimization of large-scale truss structures using sparse SAND formulations. Int. J. Numer. Meth. Eng. 69(2), 390–407 (2007)CrossRefMATH
3.
go back to reference Rojas-Labanda, S., Stolpe, M.: Benchmarking optimization solvers for structural topology optimization. Struct. Multi. Optim., 1–21 (2015) Rojas-Labanda, S., Stolpe, M.: Benchmarking optimization solvers for structural topology optimization. Struct. Multi. Optim., 1–21 (2015)
4.
go back to reference Rojas-Labanda, S., Stolpe, M.: An efficient second-order SQP method for structural topology optimization. Struct. Multi. Optim., 1–19 (2015) Rojas-Labanda, S., Stolpe, M.: An efficient second-order SQP method for structural topology optimization. Struct. Multi. Optim., 1–19 (2015)
5.
go back to reference Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)CrossRef Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)CrossRef
6.
go back to reference Rozvany, G.I.N., Zhou, M.: Applications of the COC algorithm in layout optimization. In: Engineering Optimization in Design Processes, pp. 59–70. Springer (1991) Rozvany, G.I.N., Zhou, M.: Applications of the COC algorithm in layout optimization. In: Engineering Optimization in Design Processes, pp. 59–70. Springer (1991)
8.
go back to reference Duysinx, P., Bendsøe, M.P.: Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Meth. Eng. 43(8), 1453–1478 (1998)MathSciNetCrossRefMATH Duysinx, P., Bendsøe, M.P.: Topology optimization of continuum structures with local stress constraints. Int. J. Numer. Meth. Eng. 43(8), 1453–1478 (1998)MathSciNetCrossRefMATH
9.
go back to reference Munro, D., Groenwold, A.A.: Local stress-constrained and slope-constrained sand topology optimisation. Int. J. Numer. Methods Eng. (2016). Accepted and Published Online Munro, D., Groenwold, A.A.: Local stress-constrained and slope-constrained sand topology optimisation. Int. J. Numer. Methods Eng. (2016). Accepted and Published Online
10.
go back to reference Munro, D., Groenwold, A.A.: On design-set restriction in SAND topology optimization. Struct. Multi. Optim. (2017). Submitted; under review Munro, D., Groenwold, A.A.: On design-set restriction in SAND topology optimization. Struct. Multi. Optim. (2017). Submitted; under review
11.
go back to reference Zhou, M., Fleury, R., Shyy, Y., Thomas, H., Brennan, J.M.: Progress in topology optimization with manufacturing constraints. In: Proceedings of the 9th AIAA MDO Conference AIAA-2002-4901 (2002) Zhou, M., Fleury, R., Shyy, Y., Thomas, H., Brennan, J.M.: Progress in topology optimization with manufacturing constraints. In: Proceedings of the 9th AIAA MDO Conference AIAA-2002-4901 (2002)
12.
go back to reference Rong, J.H., Xiao, T.T., Yu, L.H., Rong, X.P., Xie, Y.J.: Continuum structural topological optimizations with stress constraints based on an active constraint technique. Int. J. Numer. Meth. Eng. 108(4), 326–360 (2016)MathSciNetCrossRef Rong, J.H., Xiao, T.T., Yu, L.H., Rong, X.P., Xie, Y.J.: Continuum structural topological optimizations with stress constraints based on an active constraint technique. Int. J. Numer. Meth. Eng. 108(4), 326–360 (2016)MathSciNetCrossRef
13.
go back to reference Duysinx, P., Van Miegroet, L., Lemaire, E., Brüls, O., Bruyneel, M.: Topology and generalized shape optimization: why stress constraints are so important? Int. J. Simul. Multi. Design Optim. 2(4), 253–258 (2008)CrossRef Duysinx, P., Van Miegroet, L., Lemaire, E., Brüls, O., Bruyneel, M.: Topology and generalized shape optimization: why stress constraints are so important? Int. J. Simul. Multi. Design Optim. 2(4), 253–258 (2008)CrossRef
14.
go back to reference Haftka, R.T., Gürdal, Z., Kamat, M.P.: Elements of Structural Optimization. Kluwer Academic Publishers, Dordrecht (1990)CrossRefMATH Haftka, R.T., Gürdal, Z., Kamat, M.P.: Elements of Structural Optimization. Kluwer Academic Publishers, Dordrecht (1990)CrossRefMATH
15.
go back to reference Fleury, C.: Structural optimisation methods for large scale problems: computational time issues. In: 8th World Congress on Structural and Multidisciplinary Optimisation, WCSMO, Lisbon, Portugal, June 2009 Fleury, C.: Structural optimisation methods for large scale problems: computational time issues. In: 8th World Congress on Structural and Multidisciplinary Optimisation, WCSMO, Lisbon, Portugal, June 2009
16.
go back to reference Bruggi, M., Duysinx, P.: Topology optimization for minimum weight with compliance and stress constraints. Struct. Multi. Optim. 46(3), 369–384 (2012)MathSciNetCrossRefMATH Bruggi, M., Duysinx, P.: Topology optimization for minimum weight with compliance and stress constraints. Struct. Multi. Optim. 46(3), 369–384 (2012)MathSciNetCrossRefMATH
17.
go back to reference Le, C., Norato, J., Bruns, T., Ha, C., Tortorelli, D.: Stress-based topology optimization for continua. Struct. Multi. Optim. 41(4), 605–620 (2010)CrossRef Le, C., Norato, J., Bruns, T., Ha, C., Tortorelli, D.: Stress-based topology optimization for continua. Struct. Multi. Optim. 41(4), 605–620 (2010)CrossRef
18.
go back to reference Verbart, A., Langelaar, M., van Keulen, F.: A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct. Multi. Optim. (2016) Verbart, A., Langelaar, M., van Keulen, F.: A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct. Multi. Optim. (2016)
19.
go back to reference Svanberg, K.: The method of moving asymptotes – a new method for structural optimization. Int. J. Numer. Meth. Eng. 24(2), 359–373 (1987)MathSciNetCrossRefMATH Svanberg, K.: The method of moving asymptotes – a new method for structural optimization. Int. J. Numer. Meth. Eng. 24(2), 359–373 (1987)MathSciNetCrossRefMATH
20.
go back to reference Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. Soc. Ind. Appl. Math. J. Optim. 12(2), 555–573 (2002)MathSciNetMATH Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. Soc. Ind. Appl. Math. J. Optim. 12(2), 555–573 (2002)MathSciNetMATH
21.
go back to reference Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L., Wächter, A.: Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. Soc. Ind. Appl. Math. J. Optim. 13(3), 635–659 (2002)MathSciNetMATH Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L., Wächter, A.: Global convergence of a trust-region SQP-filter algorithm for general nonlinear programming. Soc. Ind. Appl. Math. J. Optim. 13(3), 635–659 (2002)MathSciNetMATH
23.
go back to reference Groenwold, A.A., Etman, L.F.P.: On the conditional acceptance of iterates in SAO algorithms based on convex separable approximations. Struct. Multi. Optim. 42(2), 165–178 (2010)CrossRef Groenwold, A.A., Etman, L.F.P.: On the conditional acceptance of iterates in SAO algorithms based on convex separable approximations. Struct. Multi. Optim. 42(2), 165–178 (2010)CrossRef
24.
go back to reference Munro, D., Groenwold, A.A.: On filtered “conservatism” in direct topology design. In: The Sixth International Conference on Structural Engineering, Mechanics and Computation, University of Cape Town, September 2016 Munro, D., Groenwold, A.A.: On filtered “conservatism” in direct topology design. In: The Sixth International Conference on Structural Engineering, Mechanics and Computation, University of Cape Town, September 2016
25.
go back to reference Fleury, C., Braibant, V.: Structural optimization: a new dual method using mixed variables. Int. J. Numer. Meth. Eng. 23(3), 409–428 (1986)MathSciNetCrossRefMATH Fleury, C., Braibant, V.: Structural optimization: a new dual method using mixed variables. Int. J. Numer. Meth. Eng. 23(3), 409–428 (1986)MathSciNetCrossRefMATH
26.
go back to reference Fleury, C.: CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct. Optim. 1(2), 81–89 (1989)CrossRef Fleury, C.: CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct. Optim. 1(2), 81–89 (1989)CrossRef
27.
go back to reference Zillober, C.: SCPIP – an efficient software tool for the solution of structural optimization problems. Struct. Multi. Optim. 24(5), 362–371 (2002)CrossRef Zillober, C.: SCPIP – an efficient software tool for the solution of structural optimization problems. Struct. Multi. Optim. 24(5), 362–371 (2002)CrossRef
28.
go back to reference Groenwold, A.A., Etman, L.F.P.: SAOi: an algorithm for very large scale optimal design. In: Proceedings of Ninth World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan, Paper 035, June 2011 Groenwold, A.A., Etman, L.F.P.: SAOi: an algorithm for very large scale optimal design. In: Proceedings of Ninth World Congress on Structural and Multidisciplinary Optimization, Shizuoka, Japan, Paper 035, June 2011
30.
go back to reference Munro, D., Groenwold, A.A.: On sequential approximate simultaneous analysis and design in classical topology optimization. Int. J. Numer. Methods Eng. (2016). Accepted and Published Online Munro, D., Groenwold, A.A.: On sequential approximate simultaneous analysis and design in classical topology optimization. Int. J. Numer. Methods Eng. (2016). Accepted and Published Online
31.
go back to reference Etman, L.F.P., Groenwold, A.A., Rooda, J.E.: First-order sequential convex programming using approximate diagonal QP subproblems. Struct. Multi. Optim. 45(4), 479–488 (2012)MathSciNetCrossRefMATH Etman, L.F.P., Groenwold, A.A., Rooda, J.E.: First-order sequential convex programming using approximate diagonal QP subproblems. Struct. Multi. Optim. 45(4), 479–488 (2012)MathSciNetCrossRefMATH
32.
go back to reference Groenwold, A.A., Etman, L.F.P.: A quadratic approximation for structural topology optimization. Int. J. Numer. Meth. Eng. 82(4), 505–524 (2010)MathSciNetMATH Groenwold, A.A., Etman, L.F.P.: A quadratic approximation for structural topology optimization. Int. J. Numer. Meth. Eng. 82(4), 505–524 (2010)MathSciNetMATH
33.
go back to reference Groenwold, A.A., Etman, L.F.P., Snyman, J.A., Rooda, J.E.: Incomplete series expansion for function approximation. Struct. Multi. Optim. 34(1), 21–40 (2007)MathSciNetCrossRefMATH Groenwold, A.A., Etman, L.F.P., Snyman, J.A., Rooda, J.E.: Incomplete series expansion for function approximation. Struct. Multi. Optim. 34(1), 21–40 (2007)MathSciNetCrossRefMATH
34.
35.
go back to reference Groenwold, A.A., Etman, L.F.P.: On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int. J. Numer. Meth. Eng. 73(3), 297–316 (2008)MathSciNetCrossRefMATH Groenwold, A.A., Etman, L.F.P.: On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int. J. Numer. Meth. Eng. 73(3), 297–316 (2008)MathSciNetCrossRefMATH
36.
go back to reference Groenwold, A.A.: Positive definite separable quadratic programs for non-convex problems. Struct. Multi. Optim. 46(6), 795–802 (2012)MathSciNetCrossRefMATH Groenwold, A.A.: Positive definite separable quadratic programs for non-convex problems. Struct. Multi. Optim. 46(6), 795–802 (2012)MathSciNetCrossRefMATH
37.
go back to reference Snyman, J.A., Hay, A.M.: The spherical quadratic steepest descent (SQSD) method for unconstrained minimization with no explicit line searches. Comput. Math. Appl. 42(1), 169–178 (2001)MathSciNetCrossRefMATH Snyman, J.A., Hay, A.M.: The spherical quadratic steepest descent (SQSD) method for unconstrained minimization with no explicit line searches. Comput. Math. Appl. 42(1), 169–178 (2001)MathSciNetCrossRefMATH
38.
39.
go back to reference Fletcher, R.: Restricted Step Methods. Practical Methods of Optimization, 2nd edn. pp. 95–109 (2000) Fletcher, R.: Restricted Step Methods. Practical Methods of Optimization, 2nd edn. pp. 95–109 (2000)
40.
go back to reference Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004) Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)
41.
go back to reference Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114(1), 69–99 (2008)MathSciNetCrossRefMATH Achtziger, W., Kanzow, C.: Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114(1), 69–99 (2008)MathSciNetCrossRefMATH
42.
go back to reference Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley (2009) Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley (2009)
43.
go back to reference Bolton, H.P.J., Groenwold, A.A., Snyman, J.A.: The application of a unified bayesian stopping criterion in competing parallel algorithms for global optimization. Comput. Math. Appl. 48(3), 549–560 (2004)MathSciNetCrossRefMATH Bolton, H.P.J., Groenwold, A.A., Snyman, J.A.: The application of a unified bayesian stopping criterion in competing parallel algorithms for global optimization. Comput. Math. Appl. 48(3), 549–560 (2004)MathSciNetCrossRefMATH
Metadata
Title
Singular, Large-Scale Solutions in Local Stress-Constrained Topology Optimization
Authors
Dirk Munro
Albert Groenwold
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67988-4_83

Premium Partners