Skip to main content
Top
Published in: Journal of Materials Science 4/2017

11-10-2016 | Original Paper

Size- and shape-dependent melting enthalpy and entropy of nanoparticles

Authors: Qingshan Fu, Jinhua Zhu, Yongqiang Xue, Zixiang Cui

Published in: Journal of Materials Science | Issue 4/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A theoretical model free of any adjustable parameter was derived based on the relation between Gibbs energy change and size to describe the size- and shape-dependent behavior of the melting enthalpy and entropy of nanoparticles. For the melting enthalpy and entropy of vanadium (V), silver (Ag), and copper (Cu) nanoparticles, the results of pure theoretical calculation are in good agreement with available molecular dynamic results. The effect of size on the melting enthalpy and entropy of nanoparticles is greater compared to that of shape effect. The melting enthalpy and entropy decrease with particle size decreasing and the smaller the particle size, the greater the size and shape effects. Furthermore, at the same equivalent diameter, the more the shape of nanoparticles deviates from that of the sphere, the smaller the melting enthalpy and entropy. The thermodynamic relations derived herein can quantitatively describe the influence regularities of size and shape on the melting thermodynamic properties of nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483CrossRef Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269:481–483CrossRef
3.
go back to reference Shandiz MA, Safaei A, Sanjabi S, Barber ZH (2007) Modeling size dependence of melting temperature of metallic nanoparticles. J Phys Chem Solids 68:1396–1399CrossRef Shandiz MA, Safaei A, Sanjabi S, Barber ZH (2007) Modeling size dependence of melting temperature of metallic nanoparticles. J Phys Chem Solids 68:1396–1399CrossRef
4.
go back to reference Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J Phys Chem C 113:7598–7602CrossRef Lu HM, Li PY, Cao ZH, Meng XK (2009) Size-, shape-, and dimensionality-dependent melting temperatures of nanocrystals. J Phys Chem C 113:7598–7602CrossRef
7.
go back to reference Lee J, Sim KJ (2013) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. Calphad 44:129–132CrossRef Lee J, Sim KJ (2013) General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. Calphad 44:129–132CrossRef
9.
go back to reference Li X (2014) Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology 25:185702/1–185702/7 Li X (2014) Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology 25:185702/1–185702/7
10.
go back to reference Johnston JC, Molinero V (2012) Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. J Am Chem Soc 134:6650–6659CrossRef Johnston JC, Molinero V (2012) Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures. J Am Chem Soc 134:6650–6659CrossRef
11.
go back to reference Pan D, Liu LM, Slater B, Michaelides A, Wang E (2011) Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals. ACS Nano 5:4562–4569CrossRef Pan D, Liu LM, Slater B, Michaelides A, Wang E (2011) Melting the ice: on the relation between melting temperature and size for nanoscale ice crystals. ACS Nano 5:4562–4569CrossRef
12.
go back to reference Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Lett 63:1525–1527CrossRef Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Lett 63:1525–1527CrossRef
13.
go back to reference Wang B, Wang G, Chen X, Zhao J (2003) Melting behavior of ultrathin titanium nanowires. Phys Rev B 67:193403/1–193403/4 Wang B, Wang G, Chen X, Zhao J (2003) Melting behavior of ultrathin titanium nanowires. Phys Rev B 67:193403/1–193403/4
14.
go back to reference Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRef Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRef
15.
go back to reference Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77:99–102CrossRef Lai SL, Guo JY, Petrova V, Ramanath G, Allen LH (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77:99–102CrossRef
16.
go back to reference Lai SL, Carlsson JRA, Allen LH (1998) Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett 72:1098–1100CrossRef Lai SL, Carlsson JRA, Allen LH (1998) Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl Phys Lett 72:1098–1100CrossRef
17.
go back to reference Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317CrossRef Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317CrossRef
18.
go back to reference Sun PL, Wu SP, Chin TS (2015) Melting point depression of tin nanoparticles embedded in a stable alpha-alumina matrix fabricated by ball milling. Mater Lett 144:142–145CrossRef Sun PL, Wu SP, Chin TS (2015) Melting point depression of tin nanoparticles embedded in a stable alpha-alumina matrix fabricated by ball milling. Mater Lett 144:142–145CrossRef
19.
go back to reference Jiang Q, Shi FG (1998) Entropy for solid–liquid transition in nanocrystals. Mater Lett 37:79–82CrossRef Jiang Q, Shi FG (1998) Entropy for solid–liquid transition in nanocrystals. Mater Lett 37:79–82CrossRef
20.
go back to reference Mott NF (1934) The resistance of liquid metals. Proc Royal Soc Lond Ser A 146:465–472CrossRef Mott NF (1934) The resistance of liquid metals. Proc Royal Soc Lond Ser A 146:465–472CrossRef
21.
go back to reference Shi FG (1994) Size dependent thermal vibrations and melting in nanocrystals. J Mater Res 9:1307–1313CrossRef Shi FG (1994) Size dependent thermal vibrations and melting in nanocrystals. J Mater Res 9:1307–1313CrossRef
22.
go back to reference Jiang Q, Aya N, Shi FG (1997) Nanotube size-dependent melting of single crystals in carbon nanotubes. Appl Phys A 64:627–629CrossRef Jiang Q, Aya N, Shi FG (1997) Nanotube size-dependent melting of single crystals in carbon nanotubes. Appl Phys A 64:627–629CrossRef
23.
go back to reference Kumar R, Sharma G, Kumar M (2013) Effect of size and shape on the vibrational and thermodynamic properties of nanomaterials. J Thermodyn 2013(5):91–99 Kumar R, Sharma G, Kumar M (2013) Effect of size and shape on the vibrational and thermodynamic properties of nanomaterials. J Thermodyn 2013(5):91–99
24.
go back to reference Safaei A, Shandiz MA (2009) Size-dependent thermal stability and the smallest nanocrystal. Phys E 41:359–364CrossRef Safaei A, Shandiz MA (2009) Size-dependent thermal stability and the smallest nanocrystal. Phys E 41:359–364CrossRef
25.
go back to reference Xie D, Wang MP, Qi WH, Cao LF (2006) Thermal stability of indium nanocrystals: a theoretical study. Mater Chem Phys 96:418–421CrossRef Xie D, Wang MP, Qi WH, Cao LF (2006) Thermal stability of indium nanocrystals: a theoretical study. Mater Chem Phys 96:418–421CrossRef
26.
go back to reference Safaei A, Shandiz MA (2010) Melting entropy of nanocrystals: an approach from statistical physics. Phys Chem Chem Phys 12:15372–15381CrossRef Safaei A, Shandiz MA (2010) Melting entropy of nanocrystals: an approach from statistical physics. Phys Chem Chem Phys 12:15372–15381CrossRef
27.
go back to reference Omid H, Hamid DH, Hosseini HRM (2011) Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number. J Phys Chem C 115:17310–17313CrossRef Omid H, Hamid DH, Hosseini HRM (2011) Melting enthalpy and entropy of freestanding metallic nanoparticles based on cohesive energy and average coordination number. J Phys Chem C 115:17310–17313CrossRef
28.
go back to reference Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson JM, Bourret A (1994) Surface melting enhanced by curvature effects. Surf Sci 303:231–246CrossRef Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson JM, Bourret A (1994) Surface melting enhanced by curvature effects. Surf Sci 303:231–246CrossRef
29.
go back to reference Guisbiers G, Buchaillot L (2009) Modeling the melting enthalpy of nanomaterials. J Phys Chem C 113:3566–3568CrossRef Guisbiers G, Buchaillot L (2009) Modeling the melting enthalpy of nanomaterials. J Phys Chem C 113:3566–3568CrossRef
30.
go back to reference Xie D, Qi W, Wang M (2004) Size and shape dependent melting-thermodynamic properties of metallic nanoparticles. Acta Metall Sin 40:1041–1044 Xie D, Qi W, Wang M (2004) Size and shape dependent melting-thermodynamic properties of metallic nanoparticles. Acta Metall Sin 40:1041–1044
31.
go back to reference Xue YQ, Gao BJ, Gao JF (1997) The theory of thermodynamics for chemical reactions in dispersed heterogeneous systems. J Colloid Interface Sci 191:81–85CrossRef Xue YQ, Gao BJ, Gao JF (1997) The theory of thermodynamics for chemical reactions in dispersed heterogeneous systems. J Colloid Interface Sci 191:81–85CrossRef
32.
go back to reference Peters KF, Chung YW, Cohen JB (1997) Surface melting on small particles. Appl Phys Lett 71:2391–2393CrossRef Peters KF, Chung YW, Cohen JB (1997) Surface melting on small particles. Appl Phys Lett 71:2391–2393CrossRef
33.
go back to reference Mitome M (1999) In-situ observation of melting of fine lead particles by high-resolution electron microscopy. Surf Sci 442:L953–L958CrossRef Mitome M (1999) In-situ observation of melting of fine lead particles by high-resolution electron microscopy. Surf Sci 442:L953–L958CrossRef
34.
go back to reference Sheng HW, Lu K, Ma E (1998) Melting and freezing behavior of embedded nanoparticles in ball-milled Al–10wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater 46:5195–5205CrossRef Sheng HW, Lu K, Ma E (1998) Melting and freezing behavior of embedded nanoparticles in ball-milled Al–10wt% M (M = In, Sn, Bi, Cd, Pb) mixtures. Acta Mater 46:5195–5205CrossRef
35.
go back to reference Beaglehole D (1991) Surface melting of small particles, and the effects of surface impurities. J Cryst Growth 112:663–669CrossRef Beaglehole D (1991) Surface melting of small particles, and the effects of surface impurities. J Cryst Growth 112:663–669CrossRef
36.
go back to reference Son JH, Kim SD, Vij JK, Song JK (2014) Effect of molecular-scale surface morphology on the surface melting of liquid crystals on self-assembled monolayers. Appl Phys Lett 105:251601/1–251601/4 Son JH, Kim SD, Vij JK, Song JK (2014) Effect of molecular-scale surface morphology on the surface melting of liquid crystals on self-assembled monolayers. Appl Phys Lett 105:251601/1–251601/4
37.
go back to reference Gülseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51:7377–7380CrossRef Gülseren O, Ercolessi F, Tosatti E (1995) Premelting of thin wires. Phys Rev B 51:7377–7380CrossRef
39.
go back to reference Li B, Wang F, Zhou D, Peng Y, Ni R, Han Y (2016) Modes of surface premelting in colloidal crystals composed of attractive particles. Nature 531:485–488CrossRef Li B, Wang F, Zhou D, Peng Y, Ni R, Han Y (2016) Modes of surface premelting in colloidal crystals composed of attractive particles. Nature 531:485–488CrossRef
40.
go back to reference Alarifi HA, Atis M, Ozdogan C, Hu A, Yavuz M, Zhou Y (2013) Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J Phys Chem C 117:12289–12298CrossRef Alarifi HA, Atis M, Ozdogan C, Hu A, Yavuz M, Zhou Y (2013) Determination of complete melting and surface premelting points of silver nanoparticles by molecular dynamics simulation. J Phys Chem C 117:12289–12298CrossRef
41.
go back to reference Yaws CL (1999) Chemical Properties Handbook, 1st edn. McGraw-Hill, New York, pp 212–235 Yaws CL (1999) Chemical Properties Handbook, 1st edn. McGraw-Hill, New York, pp 212–235
42.
go back to reference Perry RH, Green DW (2008) Perry’s Chemical Engineers’ Handbook, 8th edn. McGraw-Hill, New York, pp 2–136 Perry RH, Green DW (2008) Perry’s Chemical Engineers’ Handbook, 8th edn. McGraw-Hill, New York, pp 2–136
43.
go back to reference Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92:1236–1241 Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92:1236–1241
44.
go back to reference Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 154–158 Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 154–158
45.
go back to reference Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 78–108 Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 78–108
46.
go back to reference Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 207–211 Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 207–211
47.
go back to reference Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 234–238 Yaws CL (1999) Chemical properties handbook. McGraw-Hill, Beijing, pp 234–238
48.
go back to reference Perry RH, Green D (1984) Perry’s chemical engineers’ handbook, 6th. McGraw-Hill, New York, pp 3–128 Chinese Version Perry RH, Green D (1984) Perry’s chemical engineers’ handbook, 6th. McGraw-Hill, New York, pp 3–128 Chinese Version
49.
go back to reference Cui ZX, Zhao MZ, Lai WP, Xue YQ (2011) Thermodynamics of size effect on phase transition temperatures of dispersed phases. J Phys Chem C 115:22796–22803CrossRef Cui ZX, Zhao MZ, Lai WP, Xue YQ (2011) Thermodynamics of size effect on phase transition temperatures of dispersed phases. J Phys Chem C 115:22796–22803CrossRef
50.
go back to reference Tanaka T, Hara S (2001) Thermodynamic evaluation of binary phase diagrams of small particle systems. Z Metallkd 92:467–472 Tanaka T, Hara S (2001) Thermodynamic evaluation of binary phase diagrams of small particle systems. Z Metallkd 92:467–472
51.
go back to reference Jiang Q, Yang CC, Li JC (2002) Melting enthalpy depression of nanocrystals. Mater Lett 56:1019–1021CrossRef Jiang Q, Yang CC, Li JC (2002) Melting enthalpy depression of nanocrystals. Mater Lett 56:1019–1021CrossRef
52.
go back to reference Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62:10548–10557CrossRef Zhang M, Efremov MY, Schiettekatte F, Olson EA, Kwan AT, Lai SL, Wisleder T, Greene JE, Allen LH (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys Rev B 62:10548–10557CrossRef
53.
go back to reference Luo W, Hu W, Xiao S (2008) Size effect on the thermodynamic properties of silver nanoparticles. J Phys Chem C 112:2359–2369CrossRef Luo W, Hu W, Xiao S (2008) Size effect on the thermodynamic properties of silver nanoparticles. J Phys Chem C 112:2359–2369CrossRef
54.
go back to reference Delogu F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys Rev B 72:205418/1–205418/9 Delogu F (2005) Structural and energetic properties of unsupported Cu nanoparticles from room temperature to the melting point: molecular dynamics simulations. Phys Rev B 72:205418/1–205418/9
55.
go back to reference Shandiz MA, Safaei A (2008) Melting entropy and enthalpy of metallic nanoparticles. Mater Lett 62:3954–3956CrossRef Shandiz MA, Safaei A (2008) Melting entropy and enthalpy of metallic nanoparticles. Mater Lett 62:3954–3956CrossRef
Metadata
Title
Size- and shape-dependent melting enthalpy and entropy of nanoparticles
Authors
Qingshan Fu
Jinhua Zhu
Yongqiang Xue
Zixiang Cui
Publication date
11-10-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0480-9

Other articles of this Issue 4/2017

Journal of Materials Science 4/2017 Go to the issue

Premium Partners