Skip to main content
Top
Published in: Wireless Personal Communications 2/2023

14-03-2023

Slotted Rectangular Dielectric Resonator Antenna for the Application of Satellite Communication

Authors: Madhusmita C. Sahoo, Aswin Patani

Published in: Wireless Personal Communications | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rectangular Dielectric Resonator Antenna (RDRA) is utilized for the wireless communications system because of its miniaturized size and low profile. This paper presents a design and simulation of slotted RDRA for satellite communication. The major aim of the work is to attain a high gain and radiation efficiency. Hence, the parasitic patch is introduced in this work to achieve this requirement. In this work, the RDRA is designed with a compact size of 10 × 10 × 3 mm, which operates at 17.04 GHz for satellite communication applications. The design is evaluated on the substrate ROGERS RT DUROID 5880, and the antenna comprises Alumina (Al2O3) ceramic material. The slotted design provides better impedance bandwidth and gain. The entire work is simulated in Ansys HFSS software. The performance measures like gain, return loss, radiation pattern, VSWR and directivity are simulated and fabricated. The proposed design provides circularly polarized characteristics at 3 dB and better radiation efficiency of 100%. At last, the fabricated design prototype is analyzed and provides better performance. The simulated and fabricated outcomes proved that the proposed slotted RDRA is efficiently exploited for satellite communication.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Naik, K. K., & Sri, P. V. A. (2018). Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications. Progress in Electromagnetics Research M, 63, 163–173.CrossRef Naik, K. K., & Sri, P. V. A. (2018). Design of hexadecagon circular patch antenna with DGS at Ku band for satellite communications. Progress in Electromagnetics Research M, 63, 163–173.CrossRef
2.
go back to reference Singh, P. P., & Sharma, S. K. (2021). Design and fabrication of a triple band microstrip antenna for WLAN, satellite tv and radar applications. Progress in Electromagnetics Research C, 117, 277–289.CrossRef Singh, P. P., & Sharma, S. K. (2021). Design and fabrication of a triple band microstrip antenna for WLAN, satellite tv and radar applications. Progress in Electromagnetics Research C, 117, 277–289.CrossRef
3.
go back to reference Rao, S. J. M., Dalsania, P. C., Chidurala, S., Krishna, C. M., Narayan, P., & Prasad, D. D. (2022). Fractal segmented lotus shape planar monopole antenna for multiband applications. Materials Today: Proceedings, 66, 3450–3456. Rao, S. J. M., Dalsania, P. C., Chidurala, S., Krishna, C. M., Narayan, P., & Prasad, D. D. (2022). Fractal segmented lotus shape planar monopole antenna for multiband applications. Materials Today: Proceedings, 66, 3450–3456.
4.
go back to reference Gupta, R., Varshney, G., & Yaduvanshi, R. S. (2021). Tunable terahertz circularly polarized dielectric resonator antenna. Optik, 239, 166800.CrossRef Gupta, R., Varshney, G., & Yaduvanshi, R. S. (2021). Tunable terahertz circularly polarized dielectric resonator antenna. Optik, 239, 166800.CrossRef
5.
go back to reference Agrawal, S., Gupta, R. D., Parihar, M. S., & Kondekar, P. N. (2017). A wideband high gain dielectric resonator antenna for RF energy harvesting application. AEU-International Journal of Electronics and Communications, 78, 24–31. Agrawal, S., Gupta, R. D., Parihar, M. S., & Kondekar, P. N. (2017). A wideband high gain dielectric resonator antenna for RF energy harvesting application. AEU-International Journal of Electronics and Communications, 78, 24–31.
6.
go back to reference Lin, K. Z., & Wu, T. T. (2022). Dual-band circularly polarized hybrid dielectric resonator antenna with gain enhancement. AEU-International Journal of Electronics and Communications, 146, 154121. Lin, K. Z., & Wu, T. T. (2022). Dual-band circularly polarized hybrid dielectric resonator antenna with gain enhancement. AEU-International Journal of Electronics and Communications, 146, 154121.
7.
go back to reference Kumar, G., Singh, M., Ahlawat, S., & Yaduvanshi, R. S. (2019). Design of stacked rectangular dielectric resonator antenna for wideband applications. Wireless Personal Communications, 109(3), 1661–1672.CrossRef Kumar, G., Singh, M., Ahlawat, S., & Yaduvanshi, R. S. (2019). Design of stacked rectangular dielectric resonator antenna for wideband applications. Wireless Personal Communications, 109(3), 1661–1672.CrossRef
8.
go back to reference Zainud-Deen, S. H., Badawy, M. M., & Malhat, H. A. E. A. (2019). Dielectric resonator antenna loaded with reconfigurable plasma metamaterial polarization converter. Plasmonics, 14(6), 1321–1328.CrossRef Zainud-Deen, S. H., Badawy, M. M., & Malhat, H. A. E. A. (2019). Dielectric resonator antenna loaded with reconfigurable plasma metamaterial polarization converter. Plasmonics, 14(6), 1321–1328.CrossRef
9.
go back to reference Sharma, P., Vaish, A., & Yaduvanshi, R. S. (2019). The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. Journal of Computational Electronics, 18(4), 1333–1341.CrossRef Sharma, P., Vaish, A., & Yaduvanshi, R. S. (2019). The design of a turtle-shaped dielectric resonator antenna for ultrawide-band applications. Journal of Computational Electronics, 18(4), 1333–1341.CrossRef
10.
go back to reference Kumar, A., & Yaduvanshi, R. S. (2021). Design and analysis of circularly polarized dielectric resonator antenna. Wireless Personal Communications, 118(4), 2663–2673.CrossRef Kumar, A., & Yaduvanshi, R. S. (2021). Design and analysis of circularly polarized dielectric resonator antenna. Wireless Personal Communications, 118(4), 2663–2673.CrossRef
11.
go back to reference Mohanty, S., & Mohapatra, B. (2021). Leaky waveguide based dielectric resonator antenna for millimeter-wave applications. Transactions on Electrical and Electronic Materials, 22(3), 310–316.CrossRef Mohanty, S., & Mohapatra, B. (2021). Leaky waveguide based dielectric resonator antenna for millimeter-wave applications. Transactions on Electrical and Electronic Materials, 22(3), 310–316.CrossRef
12.
go back to reference Yadav, S. K., Kaur, A., & Khanna, R. (2021). Compact rack shaped MIMO dielectric resonator antenna with improved axial ratio for UWB applications. Wireless Personal Communications, 117(2), 591–606.CrossRef Yadav, S. K., Kaur, A., & Khanna, R. (2021). Compact rack shaped MIMO dielectric resonator antenna with improved axial ratio for UWB applications. Wireless Personal Communications, 117(2), 591–606.CrossRef
13.
go back to reference Khalily, M., Rahim, M. K. A., & Kishk, A. A. (2011). Bandwidth enhancement and radiation characteristics improvement of rectangular dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 10, 393–395.CrossRef Khalily, M., Rahim, M. K. A., & Kishk, A. A. (2011). Bandwidth enhancement and radiation characteristics improvement of rectangular dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 10, 393–395.CrossRef
14.
go back to reference Maayah, B., Arqub, O. A., Alnabulsi, S., & Alsulami, H. (2022). Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme. Chinese Journal of Physics, 80, 463–483.MathSciNetCrossRef Maayah, B., Arqub, O. A., Alnabulsi, S., & Alsulami, H. (2022). Numerical solutions and geometric attractors of a fractional model of the cancer-immune based on the Atangana-Baleanu-Caputo derivative and the reproducing kernel scheme. Chinese Journal of Physics, 80, 463–483.MathSciNetCrossRef
15.
go back to reference Aal, M. A., Djennadi, S., Arqub, O. A., Alsulami, H. (2022). On the recovery of a conformable time-dependent inverse coefficient problem for diffusion equation of periodic constraints type and integral over-posed data. Mathematical Problems in Engineering, 2022. Aal, M. A., Djennadi, S., Arqub, O. A., Alsulami, H. (2022). On the recovery of a conformable time-dependent inverse coefficient problem for diffusion equation of periodic constraints type and integral over-posed data. Mathematical Problems in Engineering, 2022.
16.
go back to reference Cevikel, A. C., Bekir, A., Abu Arqub, O., Abukhaled, M. (2022). Solitary wave solutions of Fitzhugh–Nagumo-type equations with conformable derivatives. Frontiers in Physics, 1064. Cevikel, A. C., Bekir, A., Abu Arqub, O., Abukhaled, M. (2022). Solitary wave solutions of Fitzhugh–Nagumo-type equations with conformable derivatives. Frontiers in Physics, 1064.
17.
go back to reference Sweis, H., Arqub, O. A., Shawagfeh, N. (2022). Fractional delay integrodifferential equations of nonsingular kernels: existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials. International Journal of Modern Physics C, (б/н), 2350052–2350052. Sweis, H., Arqub, O. A., Shawagfeh, N. (2022). Fractional delay integrodifferential equations of nonsingular kernels: existence, uniqueness, and numerical solutions using Galerkin algorithm based on shifted Legendre polynomials. International Journal of Modern Physics C, (б/н), 2350052–2350052.
18.
go back to reference Kumar, G., & Yaduvanshi, R. S. (2021). Dielectric resonator antenna with hollow cylinder for wide bandwidth. In International conference on soft computing and signal processing Springer, Singapore 441–446. Kumar, G., & Yaduvanshi, R. S. (2021). Dielectric resonator antenna with hollow cylinder for wide bandwidth. In International conference on soft computing and signal processing Springer, Singapore 441–446.
19.
go back to reference Hwang, Y., Zhang, Y. P., Luk, K. M., & Yung, E. K. (1997). Gain-enhanced miniaturized rectangular dielectric resonator antenna. Electronics Letters, 33(5), 350–352.CrossRef Hwang, Y., Zhang, Y. P., Luk, K. M., & Yung, E. K. (1997). Gain-enhanced miniaturized rectangular dielectric resonator antenna. Electronics Letters, 33(5), 350–352.CrossRef
20.
go back to reference Petosa, A., & Thirakoune, S. (2011). Rectangular dielectric resonator antennas with enhanced gain. IEEE Transactions on Antennas and Propagation, 59(4), 1385–1389.CrossRef Petosa, A., & Thirakoune, S. (2011). Rectangular dielectric resonator antennas with enhanced gain. IEEE Transactions on Antennas and Propagation, 59(4), 1385–1389.CrossRef
21.
go back to reference Dash, S. K. K., Cheng, Q. S., & Khan, T. (2021). A superstrate loaded aperture coupled dual-band circularly polarized dielectric resonator antenna for X-band communications. International Journal of Microwave and Wireless Technologies, 13(8), 867–874.CrossRef Dash, S. K. K., Cheng, Q. S., & Khan, T. (2021). A superstrate loaded aperture coupled dual-band circularly polarized dielectric resonator antenna for X-band communications. International Journal of Microwave and Wireless Technologies, 13(8), 867–874.CrossRef
22.
go back to reference Sun, W. J., Yang, W. W., Chu, P., & Chen, J. X. (2019). A wideband stacked dielectric resonator antenna for 5G applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(10), e21897.CrossRef Sun, W. J., Yang, W. W., Chu, P., & Chen, J. X. (2019). A wideband stacked dielectric resonator antenna for 5G applications. International Journal of RF and Microwave Computer-Aided Engineering, 29(10), e21897.CrossRef
23.
go back to reference Anuar, S. U., Jamaluddin, M. H., Din, J., Kamardin, K., Dahri, M. H., & Idris, I. H. (2020). Triple band MIMO dielectric resonator antenna for LTE applications. AEU-International Journal of Electronics and Communications, 118, 153172. Anuar, S. U., Jamaluddin, M. H., Din, J., Kamardin, K., Dahri, M. H., & Idris, I. H. (2020). Triple band MIMO dielectric resonator antenna for LTE applications. AEU-International Journal of Electronics and Communications, 118, 153172.
24.
go back to reference Singhwal, S. S., Kanaujia, B. K., Singh, A., Kishor, J., & Matekovits, L. (2020). Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications. Journal of Electromagnetic Waves and Applications, 34(9), 1180–1194.CrossRef Singhwal, S. S., Kanaujia, B. K., Singh, A., Kishor, J., & Matekovits, L. (2020). Multiple input multiple output dielectric resonator antenna with circular polarized adaptability for 5G applications. Journal of Electromagnetic Waves and Applications, 34(9), 1180–1194.CrossRef
25.
go back to reference Altaf, A., & Seo, M. (2020). Dual-band circularly polarized dielectric resonator antenna for WLAN and WiMAX applications. Sensors, 20(4), 1137.CrossRef Altaf, A., & Seo, M. (2020). Dual-band circularly polarized dielectric resonator antenna for WLAN and WiMAX applications. Sensors, 20(4), 1137.CrossRef
26.
go back to reference Gotra, S., Pandey, V. S., & Yaduvanshi, R. S. (2021). A wideband graphene coated dielectric resonator antenna with circular polarization generation technique for THz applications. Superlattices and Microstructures, 150, 106754.CrossRef Gotra, S., Pandey, V. S., & Yaduvanshi, R. S. (2021). A wideband graphene coated dielectric resonator antenna with circular polarization generation technique for THz applications. Superlattices and Microstructures, 150, 106754.CrossRef
27.
go back to reference Pathak, D., & Kushwah, V. S. (2021). Wide band hybrid dielectric resonator antenna for C band using FR-4 material. Materials Today: Proceedings, 47, 6719–6723. Pathak, D., & Kushwah, V. S. (2021). Wide band hybrid dielectric resonator antenna for C band using FR-4 material. Materials Today: Proceedings, 47, 6719–6723.
28.
go back to reference Shahadan, N. H., Jamaluddin, M. H., Kamarudin, M. R., Yamada, Y., Khalily, M., Jusoh, M., & Dahlan, S. H. (2017). Steerable higher order mode dielectric resonator antenna with parasitic elements for 5G applications. IEEE Access, 5, 22234–22243.CrossRef Shahadan, N. H., Jamaluddin, M. H., Kamarudin, M. R., Yamada, Y., Khalily, M., Jusoh, M., & Dahlan, S. H. (2017). Steerable higher order mode dielectric resonator antenna with parasitic elements for 5G applications. IEEE Access, 5, 22234–22243.CrossRef
29.
go back to reference Chauhan, M., & Mukherjee, B. (2019). Investigation of T-shaped compact dielectric resonator antenna for wideband application. Radioelectronics and Communications Systems, 62(11), 594–603.CrossRef Chauhan, M., & Mukherjee, B. (2019). Investigation of T-shaped compact dielectric resonator antenna for wideband application. Radioelectronics and Communications Systems, 62(11), 594–603.CrossRef
30.
go back to reference Tong, C. W., Tang, H., Qin, W., Yang, W. W., & Chen, J. X. (2020). A Ku band frequency-reconfigurable dielectric resonator antenna using metallic pillars. Microwave and Optical Technology Letters, 62(4), 1760–1764.CrossRef Tong, C. W., Tang, H., Qin, W., Yang, W. W., & Chen, J. X. (2020). A Ku band frequency-reconfigurable dielectric resonator antenna using metallic pillars. Microwave and Optical Technology Letters, 62(4), 1760–1764.CrossRef
31.
go back to reference Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antennas Baldock, UK: Research Studies Press 366. Luk, K. M., & Leung, K. W. (2003). Dielectric resonator antennas Baldock, UK: Research Studies Press 366.
32.
go back to reference Mohanty, S., Khan, A., Mohapatra, B. (2020). Embedded rectangular dielectric resonator antenna for KuBand applications. Available at SSRN 3549250. Mohanty, S., Khan, A., Mohapatra, B. (2020). Embedded rectangular dielectric resonator antenna for KuBand applications. Available at SSRN 3549250.
33.
go back to reference Nalanagula, R., Darimireddy, N. K., Kumari, R., & Park, C. W. (2022). Dual circularly polarized semi-cylindrical hybrid dielectric resonator antenna for X and Ku-band applications. International Journal of RF and Microwave Computer-Aided Engineering, 32(9), e23279.CrossRef Nalanagula, R., Darimireddy, N. K., Kumari, R., & Park, C. W. (2022). Dual circularly polarized semi-cylindrical hybrid dielectric resonator antenna for X and Ku-band applications. International Journal of RF and Microwave Computer-Aided Engineering, 32(9), e23279.CrossRef
34.
go back to reference Anantha, B., & Merugu, L. (2019). Dual-band rectangular dielectric resonator antenna. In 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting IEEE, 75–76. Anantha, B., & Merugu, L. (2019). Dual-band rectangular dielectric resonator antenna. In 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting IEEE, 75–76.
35.
go back to reference Zubir, I. A., Othman, M., Ullah, U., Kamal, S., Ab Rahman, M. F., Hussin, R., Omar, M. F. B. M., Mohammed, A. S., Ain, M. F. B., Ahmad, Z. A., & Abdullah, M. Z. (2020). A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for Ku and K band applications. IEEE Access, 8, 151219–151228.CrossRef Zubir, I. A., Othman, M., Ullah, U., Kamal, S., Ab Rahman, M. F., Hussin, R., Omar, M. F. B. M., Mohammed, A. S., Ain, M. F. B., Ahmad, Z. A., & Abdullah, M. Z. (2020). A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for Ku and K band applications. IEEE Access, 8, 151219–151228.CrossRef
Metadata
Title
Slotted Rectangular Dielectric Resonator Antenna for the Application of Satellite Communication
Authors
Madhusmita C. Sahoo
Aswin Patani
Publication date
14-03-2023
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2023
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10311-9

Other articles of this Issue 2/2023

Wireless Personal Communications 2/2023 Go to the issue