Skip to main content
Top
Published in: Journal of Nanoparticle Research 8/2012

01-08-2012 | Research Paper

SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2

Authors: Jina Choi, Yan Qu, Michael R. Hoffmann

Published in: Journal of Nanoparticle Research | Issue 8/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, the search for environmentally friendly alternative energy sources with reduced carbon footprints has increased. The coupling of photovoltaic power sources with advanced electrolysis systems for hydrogen production via water splitting using organic contaminants as sacrificial electron donors has been considered to a be viable alternative. In this report, we demonstrated the feasibility of a scaled-up rooftop prototype of the proposed hybrid photovoltaic-electrolysis system, which utilizes semiconductor nanoparticles coated on to metal substrates as electrodes for the generation of hydrogen coupled with the oxidation of wastewater. Application of an anodic bias of >2.0 V to bismuth-doped TiO2 (BiO x –TiO2) on Ti metal anodes with a sequential under-coatings of nanoparticulate SnO2, IrO2, Ta2O5, and Bi2O3 results in the electrochemical degradation of a variety of organic chemical contaminants in water (i.e., rhodamine B (Rh.B), methylene blue (MB), salicylic acid, triclosan, and phenol) and actual wastewater from a chemical manufacturing plant, while at the same time, molecular hydrogen is produced at stainless steel (SS) cathodes. The kinetics of the anodic substrates oxidation is investigated as a function of the cell current (I cell), substrate concentration, and background electrolyte composition (e.g., NaCl, Na2SO4, or seawater). Average current efficiencies were found to be in the range of 4–22 %, while the cathodic current and energy efficiencies for hydrogen production were found to be in the range of 50–70 % and 20–40 %, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmad GE, El Shenawy ET (2006) Optimized photovoltiac system for hydrogen production. Renew Energ 31:1043–1054CrossRef Ahmad GE, El Shenawy ET (2006) Optimized photovoltiac system for hydrogen production. Renew Energ 31:1043–1054CrossRef
go back to reference Anglada A, Urtiaga A, et al (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol. doi:10.1002/jctb.2214 Anglada A, Urtiaga A, et al (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol. doi:10.​1002/​jctb.​2214
go back to reference Bonfatti F, Ferro S et al (2000) Electrochemical incineration of glucose as a model organic substrate—II. Role of active chlorine mediation. J Electrochem Soc 147:592–596CrossRef Bonfatti F, Ferro S et al (2000) Electrochemical incineration of glucose as a model organic substrate—II. Role of active chlorine mediation. J Electrochem Soc 147:592–596CrossRef
go back to reference Cabeza A, Urtiaga AM et al (2007) Electrochemical treatment of landfill leachates using a boron-doped diamond anode. Ind Eng Chem Res 46:1439–1446CrossRef Cabeza A, Urtiaga AM et al (2007) Electrochemical treatment of landfill leachates using a boron-doped diamond anode. Ind Eng Chem Res 46:1439–1446CrossRef
go back to reference Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41CrossRef Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41CrossRef
go back to reference Comninellis C, Nerini A (1995) Anodic-oxidation of phenol in the presence of NaCl for waste-water treatment. J Appl Electrochem 25:23–28CrossRef Comninellis C, Nerini A (1995) Anodic-oxidation of phenol in the presence of NaCl for waste-water treatment. J Appl Electrochem 25:23–28CrossRef
go back to reference Comninellis C, Pulgarin C (1991) Anodic-oxidation of phenol for waste-water treatment. J Appl Electrochem 21:703–708CrossRef Comninellis C, Pulgarin C (1991) Anodic-oxidation of phenol for waste-water treatment. J Appl Electrochem 21:703–708CrossRef
go back to reference DOE (2008) International energy outlook 2006; DOE/EIA = 0484(2008). Energy Information Administration DOE (2008) International energy outlook 2006; DOE/EIA = 0484(2008). Energy Information Administration
go back to reference Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940CrossRef Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940CrossRef
go back to reference Hollmuller P, Joubert JM et al (2000) Evaluation of a 5 kW(P) photovoltaic hydrogen production and storage installation for a residential home in Switzerland. Int J Hydrogen Energy 25:97–109CrossRef Hollmuller P, Joubert JM et al (2000) Evaluation of a 5 kW(P) photovoltaic hydrogen production and storage installation for a residential home in Switzerland. Int J Hydrogen Energy 25:97–109CrossRef
go back to reference Iniesta J, Michaud PA et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578CrossRef Iniesta J, Michaud PA et al (2001) Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochim Acta 46:3573–3578CrossRef
go back to reference Jiang JY, Chang M et al (2008) Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes. Environ Sci Technol 42:3059–3063CrossRef Jiang JY, Chang M et al (2008) Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes. Environ Sci Technol 42:3059–3063CrossRef
go back to reference Juttner K, Galla U et al (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594CrossRef Juttner K, Galla U et al (2000) Electrochemical approaches to environmental problems in the process industry. Electrochim Acta 45:2575–2594CrossRef
go back to reference Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385 Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2:355–385
go back to reference Lehman PA, Chamberlin CE et al (1997) Operating experience with a photovoltaic-hydrogen energy system. Int J Hydrogen Energy 22:465–470CrossRef Lehman PA, Chamberlin CE et al (1997) Operating experience with a photovoltaic-hydrogen energy system. Int J Hydrogen Energy 22:465–470CrossRef
go back to reference Montanaro D, Petrucci E (2009) Electrochemical treatment of Remazol Brilliant Blue on a boron-doped diamond electrode. Chem Eng J 153:138–144CrossRef Montanaro D, Petrucci E (2009) Electrochemical treatment of Remazol Brilliant Blue on a boron-doped diamond electrode. Chem Eng J 153:138–144CrossRef
go back to reference Montanaro D, Petrucci E et al (2008) Anodic, cathodic and combined treatments for the electrochemical oxidation of an effluent from the flame retardant industry. J Appl Electrochem 38:947–954CrossRef Montanaro D, Petrucci E et al (2008) Anodic, cathodic and combined treatments for the electrochemical oxidation of an effluent from the flame retardant industry. J Appl Electrochem 38:947–954CrossRef
go back to reference Murugananthan M, Yoshihara S et al (2007) Electrochemical degradation of 17 beta-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim Acta 52:3242–3249CrossRef Murugananthan M, Yoshihara S et al (2007) Electrochemical degradation of 17 beta-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim Acta 52:3242–3249CrossRef
go back to reference Panizza M, Barbucci A et al (2007) Electrochemical degradation of methylene blue. Sep Purif Technol 54:382–387CrossRef Panizza M, Barbucci A et al (2007) Electrochemical degradation of methylene blue. Sep Purif Technol 54:382–387CrossRef
go back to reference Park H, Vecitis CD et al (2008a) Solar-powered production of molecular hydrogen from water. J Phys Chem C 112:885–889CrossRef Park H, Vecitis CD et al (2008a) Solar-powered production of molecular hydrogen from water. J Phys Chem C 112:885–889CrossRef
go back to reference Park H, Vecitis CD et al (2008b) Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen. J Phys Chem A 112:7616–7626CrossRef Park H, Vecitis CD et al (2008b) Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen. J Phys Chem A 112:7616–7626CrossRef
go back to reference Park H, Vecitis CD et al (2009) Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J Phys Chem C 113:7935–7945CrossRef Park H, Vecitis CD et al (2009) Electrochemical water splitting coupled with organic compound oxidation: the role of active chlorine species. J Phys Chem C 113:7935–7945CrossRef
go back to reference Petrucci E, Montanaro D (2011) Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode. Chem Eng J 174:612–618CrossRef Petrucci E, Montanaro D (2011) Anodic oxidation of a simulated effluent containing Reactive Blue 19 on a boron-doped diamond electrode. Chem Eng J 174:612–618CrossRef
go back to reference Shen ZM, Yang J et al (2005) Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environ Sci Technol 39:1819–1826CrossRef Shen ZM, Yang J et al (2005) Dual electrodes oxidation of dye wastewater with gas diffusion cathode. Environ Sci Technol 39:1819–1826CrossRef
go back to reference Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York
go back to reference Urtiaga A, Rueda A et al (2009) Integrated treatment of landfill leachates including electrooxidation at pilot plant scale. J Hazard Mater 166:1530–1534CrossRef Urtiaga A, Rueda A et al (2009) Integrated treatment of landfill leachates including electrooxidation at pilot plant scale. J Hazard Mater 166:1530–1534CrossRef
go back to reference Vaghela SS, Jethva AD et al (2005) Laboratory studies of electrochemical treatment of industrial azo dye effluent. Environ Sci Technol 39:2848–2855CrossRef Vaghela SS, Jethva AD et al (2005) Laboratory studies of electrochemical treatment of industrial azo dye effluent. Environ Sci Technol 39:2848–2855CrossRef
go back to reference Vlyssides AG, Karlis PK et al (2002) Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. J Hazard Mater 95:215–226CrossRef Vlyssides AG, Karlis PK et al (2002) Electrochemical treatment in relation to pH of domestic wastewater using Ti/Pt electrodes. J Hazard Mater 95:215–226CrossRef
go back to reference Weres O (2009) Electrode with surface comprising oxides of titanium and bismuth and water purification process using this electrode, US 7494583 B2 Weres O (2009) Electrode with surface comprising oxides of titanium and bismuth and water purification process using this electrode, US 7494583 B2
Metadata
Title
SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2
Authors
Jina Choi
Yan Qu
Michael R. Hoffmann
Publication date
01-08-2012
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 8/2012
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-012-0983-5

Other articles of this Issue 8/2012

Journal of Nanoparticle Research 8/2012 Go to the issue

Premium Partners