Skip to main content
Top

2005 | Book

Socionics

Scalability of Complex Social Systems

Editors: Klaus Fischer, Michael Florian, Thomas Malsch

Publisher: Springer Berlin Heidelberg

Book Series : Lecture Notes in Computer Science

insite
SEARCH

Table of Contents

Frontmatter

Contribution of Socionics to the Scalability of Complex Social Systems: Introduction

Contribution of Socionics to the Scalability of Complex Social Systems: Introduction
Abstract
The aim of the introduction is to provide insight into the interdisciplinary research program of Socionics and to clarify fundamental concepts like micro-macro linkage and scalability from the two different perspectives of Sociology and DAI&MAS research. Far away from the intention to offer final answers, the article rather tries to provide a framework to understand the contributions of the book as well as to relate their content to each other. The introduction also informs the reader about the scientific context of the interdisciplinary field of Socionics and deals with basic concepts and comments from the point of view of both Sociology and DAI&MAS research.
Klaus Fischer, Michael Florian

Chapter I Multi-layer Modelling

From “Clean” Mechanisms to “Dirty” Models: Methodological Perspectives of an Up-Scaling of Actor Constellations
Abstract
Quantitative and qualitative directions of an up-scaling of sociological and socionic models are discussed. In sociology, problems of up-scaling result from the fact that explanations of structural dynamics do not work with laws but with mechanisms. In contrast to scientific laws or simple correlations, a mechanism is a step-by-step analytical description of the social dynamics which bring about the respective structural effect. If models are up-scaled, the relations between their various independent and dependent variables become more and more ”fuzzy” and a tension can be identified between ”clean” mechanisms and ”dirty” models. Although sociological and socionic models are always constructed for specific cases, with all implications of ”dirtiness”, it will be argued that ”clean” mechanisms are not only helpful but indispensable: The ”dirtier” the models become with up-scaling, the ”cleaner” must be the mechanisms used in modelling to support scientific generalization.
Uwe Schimank
Sociological Foundation of the Holonic Approach Using Habitus-Field-Theory to Improve Multiagent Systems
Abstract
In this paper, I discuss the most important aspects of a sociological foundation of holonic multiagent systems. Pierre Bourdieu’s habitus-field-theory forms the sociological basis for my arguments. With this theory I would like to consider the special quality of holons as autonomous and self-organising social entities with clear distinction to the simple coordination of social interactions. Holons are viewed as organisational fields, which are both “autonomous social fields” and “corporate agents”. To clarify the advantages of this approach, I introduce a matrix of mechanisms using delegation (task delegation and social delegation) as a central concept to define organisational relationships in task-assignment multiagent systems. Using the matrix of delegation as basic building block, I propose a new dimension of emergent system behaviour in a holonic multiagent system which allows new, qualitative forms of scalability in complex systems of distributed artificial intelligence.
Frank Hillebrandt
Linking Micro and Macro Description of Scalable Social Systems Using Reference Nets
Abstract
Socionics attempts to release the architecture of multi-agent systems from the restrictive micro perspective viewpoint by the integration of the macro perspective in order to arrive at innovative agent systems. This paper shows how central research topics of sociology and computer science can be combined, in order to arrive at innovative agent systems. In the context of sociology the duality of micro and macro elements is relevant, while recursiveness of models appears in the perspective of computer science. These two elements are unified in our work to the socionic multi-agent architecture Sonar.
The formal model, on which the representation bases, is the recursive formalism of reference nets—an extension of Petri nets that permits to understand nets again as tokens. With the help of these nets first of all a compact implementation of the multi-agent architecture Mulan is designed, secondly it serves as a description language for the sociological model, which is the fundament of Sonar. The main result here is to present an architecture based on Mulan and Sonar allowing to cover the micro as well as the macro perspective in agent-oriented modelling. Doing so, we introduce a scalable model based on agent systems.
Michael Köhler, Daniel Moldt, Heiko Rölke, Rüdiger Valk

Chapter II Concepts for Organization and Self-Organization

Building Scalable Virtual Communities — Infrastructure Requirements and Computational Costs
Abstract
The concept of a “community” is often an essential feature of many existing scientific collaborations. Collaboration networks generally involve bringing together participants who wish to achieve some common outcome. Scientists often work in informal collaborations to solve complex problems that require multiple types of skills. Increasingly, scientific collaborations are becoming interdisciplinary—requiring participants who posses different skills to come together. Such communities may be generally composed of participants with complimentary or similar skills—who may decide to collaborate to more efficiently solve a single large problem. If such a community wishes to utilise computational resources to undertake their work, it is useful to identify metrics that may be used to characterise their collaboration. Such metrics are useful to identify particular types of communities, or more importantly, particular features of communities that are likely to lead to successful collaborations as the number of participants (or the resources they are sharing) increases.
Omer F. Rana, Asif Akram, Steven J. Lynden
Organization: The Central Concept for Qualitative and Quantitative Scalability
Abstract
In sociology and distributed artificial intelligence, researchers are investigating two different ways of scaling. On the one hand, there is qualitative scaling, meaning that (social) complexity is increased, introducing regular practices of action, institutions, new fields of social action and requiring new dimensions in perception and decision making. On the other hand, researchers are interested in investigating quantitative scalability, i.e. how goals can be achieved under the constraints imposed by a growing population.
Our argument is structured as follows: firstly, we want to establish that organizations and interorganizational networks are an important cornerstone for the analysis of qualitative scaling. Secondly, we show by empirical evaluation that an elaborate theoretical concept of such networks increases the quantitative scalability of multiagent systems.
Michael Schillo, Daniela Spresny
Agents Enacting Social Roles. Balancing Formal Structure and Practical Rationality in MAS Design
Abstract
We introduce an integrated approach to the conceptualisation, implementation and evaluation of a MAS (multi-agent system) which is based on sociological concepts of practical roles and organisational coordination via negotiations. We propose a middle level of scale, located between interaction and the overall organisational structure, as the starting point for MAS design, with formal and practical modes of coordination to be distinguished over all relevant levels of scale. In our contribution, we present the modelling principles of our MAS, the agent architecture and the implementation. In the next step the approach is extended to a methodology for the investigation of processes of hybridisation, which means the re-entering of artificial sociality in a real-world domain. The integrated approach is intended to contribute to a generalised understanding of the Socionics program, which in our view should be seen as the enrolment of independent, but subsequent steps in an overall interdisciplinary approach.
Martin Meister, Diemo Urbig, Kay Schröter, Renate Gerstl
Scalability, Scaling Processes, and the Management of Complexity. A System Theoretical Approach
Abstract
This work proposes a system theoretical framework for analyzing scalability and scaling processes. Our aim is to clarify the vocabulary used in the debate on scalability issues in multi-agent systems. We, therefore, refer to the terminology of Niklas Luhmann’s sociological system theory and general complexity science. To evaluate the heuristic strength of the analytical framework, it is applied to a particular socionic model of a scalable system. Finally, we introduce some proposals for the modelling of scalable multi-agent systems from a sociological point of view. More specifically and system theoretically seen, such a scalable system has to be conceptualized as an organized multi-system system.
Kai Paetow, Marco Schmitt, Thomas Malsch

Chapter III The Emergence of Social Structures

On the Organisation of Agent Experience: Scaling Up Social Cognition
Abstract
This paper introduces “micro-scalability” as a novel design objective for social reasoning architectures operating in open multiagent systems. Micro-scalability is based on the idea that social reasoning algorithms should be devised in a way that allows for social complexity reduction, and that this can be achieved by operationalising principles of interactionist sociology. We first present a formal model of InFFrA agents called m 2 InFFrA that utilises two cornerstones of micro-scalability, the principles of social abstraction and transient social optimality. Then, we exemplify the usefulness of these concepts by presenting experimental results with a novel opponent classification heuristic AdHoc that has been developed using the InFFrA social reasoning architecture. These results prove that micro-scalability deserves further investigation as a useful aspect of socionic research.
Michael Rovatsos, Kai Paetow
Trust and the Economy of Symbolic Goods: A Contribution to the Scalability of Open Multi-agent Systems
Abstract
Today, the importance of trust to issues of social coordination seems to be largely accepted in Distributed AI and sociology. This paper suggests a sociological multi-level concept of trust to provide suitable solutions to problems of large-scale open multi-agent systems (MAS). For this purpose, we firstly analyze DAI concepts dealing with the notion of trust and examine effects of trust on the scalability of MAS. We argue that trust itself must be modeled as a social mechanism that allows the scaling up of agent coordination in open MAS. Secondly, we summarize sociological conceptions of trust and outline problems concerning the build-up and diffusion of trust from a sociological perspective. Finally, we introduce a multi-level approach to trust by referring to sociologist Pierre Bourdieu’s concept of the economy of symbolic goods including basic social mechanisms in order to cope with the coordination of large numbers of heterogeneous agents.
Bettina Fley, Michael Florian
Coordination in Scaling Actor Constellations
The Advantages of Small-World Networks
Abstract
The emergence of order in systems with many actors or agents is an interesting problem for sociology as well as for computer science. Starting the from sociological theory of the dyadic “situation of double contingency”, our main focus is on large actor populations and their capability to produce order depending on different actors’ constellations. Based on the theory for dyadic actor constellations we present our model of the actor. We do not want the actors to identify one another, so we do not need to modify this model if we scale up population size next and introduce constellations. Thereby we take regular, random and small–world constellations into account. After describing our measures of order we study emergence of order in different constellations for varying population sizes. By means of simulation experiments we show that systems with small–worlds exhibit highest order on large populations which gently decreases on increasing population sizes.
Christian W. G. Lasarczyk, Thomas Kron
From Conditional Commitments to Generalized Media: On Means of Coordination Between Self-Governed Entities
Abstract
In the absence of pre-established coordination structures, what can a self-governed entity—i.e. an entity that chooses on its own between its possible actions and cannot be controlled externally—do to evoke another self-governed entity’s cooperation? In this paper, the motivating conditional self-commitment is conceived to be the basic mechanism to solve coordination problems of this kind. It will be argued that such commitments have an inherent tendency to become more and more generalized and institutionalised. The sociological concept of generalized symbolic media is reinterpreted as a concept that focuses on this point. The conceptual framework resulting from the considerations is applicable to coordination problems between human actors as well as to coordination problems between artificial agents in open multi-agent systems. Thus, it may help to transfer solutions from one realm to the other.
Ingo Schulz-Schaeffer

Chapter IV From an Agent-Centred to a Communication-Centred Perspective

Scalability and the Social Dynamics of Communication. On Comparing Social Network Analysis and Communication-Oriented Modelling as Models of Communication Networks
Abstract
Internet communication is a major challenge for anyone claiming to design scalable multiagent systems. Millions of messages are passed every day, referring to one another and thus shaping a gigantic network of communication. In this paper, we compare and discuss two different approaches to modelling and analysing such large-scale networks of communication: Social Network Analysis (SNA) and Communication-Oriented Modelling (COM). We demonstrate that, with regard to scalability, COM offers striking advantages over SNA. Based on this comparison, we identify mechanisms that foster scalability in a broader sense, comprising issues of downscaling as well.
Steffen Albrecht, Maren Lübcke, Thomas Malsch, Christoph Schlieder
Multiagent Systems Without Agents — Mirror-Holons for the Compilation and Enactment of Communication Structures
Abstract
It is widely accepted in Distributed Artificial Intelligence that a crucial property of artificial agents is their autonomy. Whereas agent autonomy enables features of agent-based applications like flexibility, robustness and emergence of novel solutions, autonomy might be also the reason for undesired or even chaotic agent behavior, and unmanageable system complexity. As a conceptual approach to the solution for this “autonomy dilemma” of agent-based software engineering, this work introduces the HolOMAS framework for open multiagent systems based on special meta-agents, so-called Mirror-Holons. Instead of restricting agent autonomy by means of normative constraints and defined organizational structures as usual, Mirror-Holons allow for the gradual uncoupling of agent interaction and emergent system functionality. Their main purpose is the derivation and adaption of social structure knowledge and evolving stochastical social programs from the observation and compilation of agent communication and additional design objectives. Social programs can either be executed by the Mirror-Holons themselves, or communicated to the agents and the system designer, similar to the functionality of mass media like television or newspapers in human societies.
Matthias Nickles, Gerhard Weiß
Communication Systems: A Unified Model of Socially Intelligent Systems
Abstract
This paper introduces communication systems (CS) as a unified model for socially intelligent systems. This model derived from sociological systems theory, combines the empirical analysis of communication in a social system with logical processing of social information to provide a general framework for computational components that exploit communication processes in multiagent systems. We present an elaborate formal model of CS that is based on expectation networks and their processing. To illustrate how the CS layer can be integrated with agent-level expectation-based methods, we discuss the conversion between CS and interaction frames in the InFFrA architecture. A number of CS-based applications that we envision suggest that this model has the potential to add a new perspective to Socionics and to multiagent systems research in general.
Matthias Nickles, Michael Rovatsos, Wilfried Brauer, Gerhard Weiß
Backmatter
Metadata
Title
Socionics
Editors
Klaus Fischer
Michael Florian
Thomas Malsch
Copyright Year
2005
Publisher
Springer Berlin Heidelberg
Electronic ISBN
978-3-540-31613-8
Print ISBN
978-3-540-30707-5
DOI
https://doi.org/10.1007/11594116