Skip to main content
Top
Published in: Journal of Materials Science 15/2017

02-03-2017 | In Honor of Larry Hench

Sol–gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering

Authors: Breno Rocha Barrioni, Ana Celeste Oliveira, Maria de Fátima Leite, Marivalda de Magalhães Pereira

Published in: Journal of Materials Science | Issue 15/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sol–gel processing allows the production of bioactive glasses (BG) with flexible compositions and the incorporation of different metallic ions with therapeutic benefits into the glass network. Manganese is among several previously studied therapeutically beneficial ions and has been shown to favour osteogenic differentiation, in addition to playing an important role in cell adhesion. The incorporation of Mn into bioactive glasses for tissue engineering has been previously conducted using the conventional melting route, whereas the sol–gel route has not yet been explored. Sol–gel technology has great versatility, allowing the preparation of BG with various compositions, sizes, morphologies and a large surface area that could provide improved cellular responses and enhanced bioactivity when compared to melt-derived glasses. In this context, this work developed new compositions of sol–gel bioactive glasses (on the SiO2–P2O5–CaO–MnO system) and explored the effects of incorporating MnO on the structure, texture, in vitro bioactivity and cytocompatibility of these materials. Our results show that Mn-containing bioactive glasses present an amorphous character, high surface area and mesoporous structure. The formation of a hydroxycarbonate apatite (HCA) layer after immersion in simulated body fluid (SBF) revealed the high bioactivity of the glasses. Ion release evaluation indicated that the Si, Ca, P and Mn release levels could be adjusted within therapeutic limits, and cytotoxic analysis demonstrated that the ionic products of all samples generated a cell-friendly environment. Therefore, Mn incorporation into the bioactive glass network appears to be a potential strategy to develop superior materials with sustained ion release for tissue engineering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Ioannou AL, Kotsakis GA, Kumar T, Hinrichs JE, Romanos G (2014) Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: a systematic review of the literature. Clin Oral Investig 19:181–191. doi:10.1007/s00784-014-1376-1 CrossRef Ioannou AL, Kotsakis GA, Kumar T, Hinrichs JE, Romanos G (2014) Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: a systematic review of the literature. Clin Oral Investig 19:181–191. doi:10.​1007/​s00784-014-1376-1 CrossRef
4.
go back to reference de Oliveira AAR, de Carvalho BB, Mansur HS, de Magalhães Pereira M (2014) Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: engineering the morphology and size of sonogels via a poly(ethylene glycol) dispersing agent. Mater Lett 133:44–48. doi:10.1016/j.matlet.2014.06.092 CrossRef de Oliveira AAR, de Carvalho BB, Mansur HS, de Magalhães Pereira M (2014) Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: engineering the morphology and size of sonogels via a poly(ethylene glycol) dispersing agent. Mater Lett 133:44–48. doi:10.​1016/​j.​matlet.​2014.​06.​092 CrossRef
8.
go back to reference Miguez-Pacheco V, Büttner T, Maçon ALB, Jones JR, Fey T, de Ligny D, Greil P, Chevalier J, Malchere A, Boccaccini AR (2016) Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. J Non Cryst Solids 432:65–72. doi:10.1016/j.jnoncrysol.2015.03.027 CrossRef Miguez-Pacheco V, Büttner T, Maçon ALB, Jones JR, Fey T, de Ligny D, Greil P, Chevalier J, Malchere A, Boccaccini AR (2016) Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. J Non Cryst Solids 432:65–72. doi:10.​1016/​j.​jnoncrysol.​2015.​03.​027 CrossRef
9.
go back to reference Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J Biomed Mater Res 28:693–698CrossRef Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J Biomed Mater Res 28:693–698CrossRef
10.
11.
go back to reference Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc 78:2463–2468CrossRef Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc 78:2463–2468CrossRef
13.
14.
go back to reference Lei B, Chen X, Han X, Zhou J (2012) Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 22:16906–16913. doi:10.1039/c2jm31384g CrossRef Lei B, Chen X, Han X, Zhou J (2012) Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 22:16906–16913. doi:10.​1039/​c2jm31384g CrossRef
16.
go back to reference El-Fiqi A, Kim T-H, Kim M, Eltohamy M, Won J-E, Lee E-J, Kim H-W (2012) Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale 4:7475–7488. doi:10.1039/c2nr31775c CrossRef El-Fiqi A, Kim T-H, Kim M, Eltohamy M, Won J-E, Lee E-J, Kim H-W (2012) Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale 4:7475–7488. doi:10.​1039/​c2nr31775c CrossRef
17.
go back to reference Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855. doi:10.1016/j.biomaterials.2005.01.006 CrossRef Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855. doi:10.​1016/​j.​biomaterials.​2005.​01.​006 CrossRef
20.
go back to reference Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, Ferreira JMF (2008) An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dent Mater 24:1343–1351. doi:10.1016/j.dental.2008.02.015 CrossRef Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, Ferreira JMF (2008) An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dent Mater 24:1343–1351. doi:10.​1016/​j.​dental.​2008.​02.​015 CrossRef
21.
go back to reference Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. J Mater Chem 22:13698–13706. doi:10.1039/c2jm31767b CrossRef Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. J Mater Chem 22:13698–13706. doi:10.​1039/​c2jm31767b CrossRef
22.
go back to reference Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419. doi:10.1098/rsif.2011.0611 CrossRef Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419. doi:10.​1098/​rsif.​2011.​0611 CrossRef
24.
25.
go back to reference Fujitani W, Hamada Y, Kawaguchi N, Mori S, Daito K, Uchinaka A, Matsumoto T, Kojima Y, Daito M, Nakano T, Matsuura N (2010) Synthesis of hydroxyapatite contining manganese and its evaluation of biocompatibility. Nano Biomed 2:37–46 Fujitani W, Hamada Y, Kawaguchi N, Mori S, Daito K, Uchinaka A, Matsumoto T, Kojima Y, Daito M, Nakano T, Matsuura N (2010) Synthesis of hydroxyapatite contining manganese and its evaluation of biocompatibility. Nano Biomed 2:37–46
27.
go back to reference Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G, Vernè E (2014) In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C 38:107–118. doi:10.1016/j.msec.2014.01.045 CrossRef Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G, Vernè E (2014) In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C 38:107–118. doi:10.​1016/​j.​msec.​2014.​01.​045 CrossRef
28.
go back to reference Srivastava AK, Pyare R, Singh SP (2012) In vitro bioactivity and physical–mechanical properties of MnO2 substituted 45S5 bioactive glasses and glass–ceramics. J Biomater Tissue Eng 2:249–258. doi:10.1166/jbt.2012.1043 CrossRef Srivastava AK, Pyare R, Singh SP (2012) In vitro bioactivity and physical–mechanical properties of MnO2 substituted 45S5 bioactive glasses and glass–ceramics. J Biomater Tissue Eng 2:249–258. doi:10.​1166/​jbt.​2012.​1043 CrossRef
30.
go back to reference de Oliveira AAR, de Souza DA, Dias LLS, de Carvalho SM, Mansur HS, de Magalhães Pereira M (2013) Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed Mater 8:025011. doi:10.1088/1748-6041/8/2/025011 de Oliveira AAR, de Souza DA, Dias LLS, de Carvalho SM, Mansur HS, de Magalhães Pereira M (2013) Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed Mater 8:025011. doi:10.​1088/​1748-6041/​8/​2/​025011
31.
go back to reference de Barros Coelho M, Magalhães Pereira M (2005) Sol–gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J Biomed Mater Res B Appl Biomater 75:451–456. doi:10.1002/jbm.b.30354 CrossRef de Barros Coelho M, Magalhães Pereira M (2005) Sol–gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J Biomed Mater Res B Appl Biomater 75:451–456. doi:10.​1002/​jbm.​b.​30354 CrossRef
32.
go back to reference Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi:10.1021/ja01145a126 CrossRef Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi:10.​1021/​ja01145a126 CrossRef
35.
go back to reference Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verné E, Höland W, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10. doi:10.1007/s10856-015-5403-9 CrossRef Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verné E, Höland W, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10. doi:10.​1007/​s10856-015-5403-9 CrossRef
37.
38.
40.
go back to reference Oki A, Parveen B, Hossain S, Adeniji S, Donahue H (2004) Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J Biomed Mater Res A 69:216–221. doi:10.1002/jbm.a.20070 CrossRef Oki A, Parveen B, Hossain S, Adeniji S, Donahue H (2004) Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J Biomed Mater Res A 69:216–221. doi:10.​1002/​jbm.​a.​20070 CrossRef
41.
go back to reference Siqueira RL, Zanotto ED (2013) The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO-P2O5 sol–gel glasses and glass–ceramics. J Mater Sci Mater Med 24:365–379. doi:10.1007/s10856-012-4797-x CrossRef Siqueira RL, Zanotto ED (2013) The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO-P2O5 sol–gel glasses and glass–ceramics. J Mater Sci Mater Med 24:365–379. doi:10.​1007/​s10856-012-4797-x CrossRef
42.
go back to reference Gu Y, Wang G, Zhang X, Zhang Y, Zhang C, Liu X, Rahaman MN, Huang W, Pan H (2014) Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Mater Sci Eng C 36:294–300. doi:10.1016/j.msec.2013.12.023 CrossRef Gu Y, Wang G, Zhang X, Zhang Y, Zhang C, Liu X, Rahaman MN, Huang W, Pan H (2014) Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Mater Sci Eng C 36:294–300. doi:10.​1016/​j.​msec.​2013.​12.​023 CrossRef
43.
go back to reference Pirayesh H, Nychka JA (2013) Sol–gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96:1643–1650. doi:10.1111/jace.12190 CrossRef Pirayesh H, Nychka JA (2013) Sol–gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96:1643–1650. doi:10.​1111/​jace.​12190 CrossRef
44.
45.
go back to reference Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics. Ceram Int 41:11024–11045. doi:10.1016/j.ceramint.2015.05.047 CrossRef Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics. Ceram Int 41:11024–11045. doi:10.​1016/​j.​ceramint.​2015.​05.​047 CrossRef
46.
go back to reference Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, Peukert W, Lao J, Jallot E, Boccaccini AR (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877. doi:10.1021/am405354y CrossRef Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, Peukert W, Lao J, Jallot E, Boccaccini AR (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877. doi:10.​1021/​am405354y CrossRef
49.
go back to reference Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476. doi:10.1021/la303768b CrossRef Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476. doi:10.​1021/​la303768b CrossRef
52.
go back to reference Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, Ferreira JMF (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids 352:322–328. doi:10.1016/j.jnoncrysol.2005.12.003 CrossRef Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, Ferreira JMF (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids 352:322–328. doi:10.​1016/​j.​jnoncrysol.​2005.​12.​003 CrossRef
53.
go back to reference Daguano JKMF, Suzuki PA, Strecker K, Oliveira JMM, Fernandes MHFV, Santos C (2013) Development and characterization of 3CaO·P2O5–SiO2–MgO glass–ceramics with different crystallization degree. J Adv Ceram 2:378–388. doi:10.1007/s40145-013-0086-5 CrossRef Daguano JKMF, Suzuki PA, Strecker K, Oliveira JMM, Fernandes MHFV, Santos C (2013) Development and characterization of 3CaO·P2O5–SiO2–MgO glass–ceramics with different crystallization degree. J Adv Ceram 2:378–388. doi:10.​1007/​s40145-013-0086-5 CrossRef
58.
60.
go back to reference Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60:3752–3757. doi:10.1016/j.matlet.2006.03.102 CrossRef Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60:3752–3757. doi:10.​1016/​j.​matlet.​2006.​03.​102 CrossRef
63.
go back to reference Hasan MS, Werner-Zwanziger U, Boyd D (2015) Composition-structure-properties relationship of strontium borate glasses for medical applications. J Biomed Mater Res A 103:2344–2354. doi:10.1002/jbm.a.35361 CrossRef Hasan MS, Werner-Zwanziger U, Boyd D (2015) Composition-structure-properties relationship of strontium borate glasses for medical applications. J Biomed Mater Res A 103:2344–2354. doi:10.​1002/​jbm.​a.​35361 CrossRef
64.
go back to reference Valliant EM, Turdean-Ionescu CA, Hanna JV, Smith ME, Jones JR (2012) Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. J Mater Chem 22:1613–1619. doi:10.1039/c1jm13225c CrossRef Valliant EM, Turdean-Ionescu CA, Hanna JV, Smith ME, Jones JR (2012) Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. J Mater Chem 22:1613–1619. doi:10.​1039/​c1jm13225c CrossRef
66.
go back to reference Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282. doi:10.1039/b814292k CrossRef Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282. doi:10.​1039/​b814292k CrossRef
67.
go back to reference Vallet-Regí M, Salinas AJ, Román J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J Mater Chem 9:515–518. doi:10.1039/a808679f CrossRef Vallet-Regí M, Salinas AJ, Román J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J Mater Chem 9:515–518. doi:10.​1039/​a808679f CrossRef
69.
go back to reference Sing KSW (1984) Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (Recommendations, 1984). Pure Appl Chem 57(1985):603–619. doi:10.1351/pac198557040603 Sing KSW (1984) Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (Recommendations, 1984). Pure Appl Chem 57(1985):603–619. doi:10.​1351/​pac198557040603
71.
go back to reference Atkinson I, Anghel EM, Predoana L, Mocioiu OC, Jecu L, Raut I, Munteanu C, Culita D, Zaharescu M (2016) Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Int 42:3033–3045. doi:10.1016/j.ceramint.2015.10.090 CrossRef Atkinson I, Anghel EM, Predoana L, Mocioiu OC, Jecu L, Raut I, Munteanu C, Culita D, Zaharescu M (2016) Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Int 42:3033–3045. doi:10.​1016/​j.​ceramint.​2015.​10.​090 CrossRef
73.
go back to reference Gunawidjaja PN, Mathew R, Lo AYH, Izquierdo-Barba I, Garcia A, Arcos D, Vallet-Regi M, Eden M (2012) Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance. Philos Trans R Soc A Math Phys Eng Sci 370:1376–1399. doi:10.1098/rsta.2011.0257 CrossRef Gunawidjaja PN, Mathew R, Lo AYH, Izquierdo-Barba I, Garcia A, Arcos D, Vallet-Regi M, Eden M (2012) Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance. Philos Trans R Soc A Math Phys Eng Sci 370:1376–1399. doi:10.​1098/​rsta.​2011.​0257 CrossRef
74.
go back to reference Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Ma Y, Zhu Y, Zhang C (2015) Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. J Mater Chem B 3:1612–1623. doi:10.1039/C4TB01287A CrossRef Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Ma Y, Zhu Y, Zhang C (2015) Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. J Mater Chem B 3:1612–1623. doi:10.​1039/​C4TB01287A CrossRef
76.
go back to reference Moreira CDF, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C 58:1207–1216. doi:10.1016/j.msec.2015.09.075 CrossRef Moreira CDF, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C 58:1207–1216. doi:10.​1016/​j.​msec.​2015.​09.​075 CrossRef
79.
go back to reference Paluszkiewicz C, Ślósarczyk A, Pijocha D, Sitarz M, Bućko M, Zima A, Chróścicka A, Lewandowska-Szumieł M (2010) Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct 976:301–309. doi:10.1016/j.molstruc.2010.04.001 CrossRef Paluszkiewicz C, Ślósarczyk A, Pijocha D, Sitarz M, Bućko M, Zima A, Chróścicka A, Lewandowska-Szumieł M (2010) Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct 976:301–309. doi:10.​1016/​j.​molstruc.​2010.​04.​001 CrossRef
80.
go back to reference Medvecký Ľ, Štulajterová R, Parilák Ľ, Trpčevská J, Ďurišin J, Barinov SM (2006) Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A Phys Eng Asp 281:221–229. doi:10.1016/j.colsurfa.2006.02.042 CrossRef Medvecký Ľ, Štulajterová R, Parilák Ľ, Trpčevská J, Ďurišin J, Barinov SM (2006) Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A Phys Eng Asp 281:221–229. doi:10.​1016/​j.​colsurfa.​2006.​02.​042 CrossRef
82.
go back to reference Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S, Suuronen R (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5:3122–3131. doi:10.1016/j.actbio.2009.04.006 CrossRef Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S, Suuronen R (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5:3122–3131. doi:10.​1016/​j.​actbio.​2009.​04.​006 CrossRef
83.
go back to reference Marsich L, Moimas L, Sergo V, Schmid C (2009) Raman spectroscopic study of bioactive silica-based glasses: the role of the alkali/alkali earth ratio on the non-bridging oxygen/bridging oxygen (NBO/BO) ratio. Spectroscopy 23:227–232. doi:10.3233/SPE-2009-0380 CrossRef Marsich L, Moimas L, Sergo V, Schmid C (2009) Raman spectroscopic study of bioactive silica-based glasses: the role of the alkali/alkali earth ratio on the non-bridging oxygen/bridging oxygen (NBO/BO) ratio. Spectroscopy 23:227–232. doi:10.​3233/​SPE-2009-0380 CrossRef
86.
go back to reference Valappil SP, Ready D, Abou Neel EA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741. doi:10.1002/adfm.200700931 CrossRef Valappil SP, Ready D, Abou Neel EA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741. doi:10.​1002/​adfm.​200700931 CrossRef
89.
go back to reference Gaddam A, Fernandes HR, Tulyaganov DU, Pascual MJ, Ferreira JMF (2014) Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses. RSC Adv 4:13581–13592. doi:10.1039/c3ra46393a CrossRef Gaddam A, Fernandes HR, Tulyaganov DU, Pascual MJ, Ferreira JMF (2014) Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses. RSC Adv 4:13581–13592. doi:10.​1039/​c3ra46393a CrossRef
90.
go back to reference Wang H, Zhao S, Xiao W, Xue J, Shen Y, Zhou J, Huang W, Rahaman MN, Zhang C, Wang D (2016) Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds. Mater Sci Eng C 58:194–203. doi:10.1016/j.msec.2015.08.027 CrossRef Wang H, Zhao S, Xiao W, Xue J, Shen Y, Zhou J, Huang W, Rahaman MN, Zhang C, Wang D (2016) Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds. Mater Sci Eng C 58:194–203. doi:10.​1016/​j.​msec.​2015.​08.​027 CrossRef
91.
go back to reference Omar S, Repp F, Desimone PM, Weinkamer R, Wagermaier W, Ceré S, Ballarre J (2015) Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: electrochemical, bioactive and in vivo response. J Non Cryst Solids 425:1–10. doi:10.1016/j.jnoncrysol.2015.05.024 CrossRef Omar S, Repp F, Desimone PM, Weinkamer R, Wagermaier W, Ceré S, Ballarre J (2015) Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: electrochemical, bioactive and in vivo response. J Non Cryst Solids 425:1–10. doi:10.​1016/​j.​jnoncrysol.​2015.​05.​024 CrossRef
95.
go back to reference Shruti S, Salinas AJ, Ferrari E, Malavasi G, Lusvardi G, Doadrio AL, Menabue L, Vallet-Regi M (2013) Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater 180:92–101. doi:10.1016/j.micromeso.2013.06.014 CrossRef Shruti S, Salinas AJ, Ferrari E, Malavasi G, Lusvardi G, Doadrio AL, Menabue L, Vallet-Regi M (2013) Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater 180:92–101. doi:10.​1016/​j.​micromeso.​2013.​06.​014 CrossRef
96.
97.
go back to reference Notingher I, Jones JR, Verrier S, Bisson I, Embanga P, Edwards P, Polak JM, Hench LL (2003) Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. Spectrosc Int J 17:275–288. doi:10.1155/2003/893584 CrossRef Notingher I, Jones JR, Verrier S, Bisson I, Embanga P, Edwards P, Polak JM, Hench LL (2003) Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. Spectrosc Int J 17:275–288. doi:10.​1155/​2003/​893584 CrossRef
99.
go back to reference Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36:2431–2439. doi:10.1016/j.ceramint.2010.07.010 CrossRef Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36:2431–2439. doi:10.​1016/​j.​ceramint.​2010.​07.​010 CrossRef
102.
go back to reference Christodoulou I, Buttery LDK, Saravanapavan P, Tai G, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 74:529–537. doi:10.1002/jbm.b.30249 CrossRef Christodoulou I, Buttery LDK, Saravanapavan P, Tai G, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 74:529–537. doi:10.​1002/​jbm.​b.​30249 CrossRef
103.
104.
go back to reference Azevedo M, Jell G, O’Donnell M, Law R, Hill R, Stevens M (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20:8854–8864. doi:10.1039/c0jm01111h CrossRef Azevedo M, Jell G, O’Donnell M, Law R, Hill R, Stevens M (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20:8854–8864. doi:10.​1039/​c0jm01111h CrossRef
106.
go back to reference Srivastava S, Kumar N (2013) Role of vanadium (V) in the differentiation of C3H10t1/2 cells towards osteoblast lineage: a comparative analysis with other trace elements. Biol Trace Elem Res 152:135–142. doi:10.1007/s12011-013-9602-2 CrossRef Srivastava S, Kumar N (2013) Role of vanadium (V) in the differentiation of C3H10t1/2 cells towards osteoblast lineage: a comparative analysis with other trace elements. Biol Trace Elem Res 152:135–142. doi:10.​1007/​s12011-013-9602-2 CrossRef
Metadata
Title
Sol–gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering
Authors
Breno Rocha Barrioni
Ana Celeste Oliveira
Maria de Fátima Leite
Marivalda de Magalhães Pereira
Publication date
02-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0944-6

Other articles of this Issue 15/2017

Journal of Materials Science 15/2017 Go to the issue

Premium Partners