Skip to main content
Top

2022 | OriginalPaper | Chapter

Solid Oxide Fuel Cell Modeling with OpenFOAM®

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Solid oxide fuel cells (SOFCs) are an electrochemical device that converts the chemical energy stored in a variety of fuels directly into electricity and produces heat as its by-product. SOFCs typically operate in high temperature range (600–1000 °C) to achieve a good ionic conductivity of solid electrolyte.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Achenbach E (1994) Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J Power Sour 49:333–348CrossRef Achenbach E (1994) Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack. J Power Sour 49:333–348CrossRef
go back to reference Beale SB, Le AD, Roth HK, Pharoah JG, Choi H-W, de Haart LGJ, Froning D (2011) Numerical and experimental analysis of a solid oxide fuel cell stack. ECS Trans 35(1):935–943CrossRef Beale SB, Le AD, Roth HK, Pharoah JG, Choi H-W, de Haart LGJ, Froning D (2011) Numerical and experimental analysis of a solid oxide fuel cell stack. ECS Trans 35(1):935–943CrossRef
go back to reference Beale S, Choi H-W, Pharoah JG, Roth HK, Jasak H, Jeon DH (2016) Open-source computational model of a solid oxide fuel cell. Comp Phys Commu 200:15–26CrossRef Beale S, Choi H-W, Pharoah JG, Roth HK, Jasak H, Jeon DH (2016) Open-source computational model of a solid oxide fuel cell. Comp Phys Commu 200:15–26CrossRef
go back to reference Beale SB, Reimer U, Froningm D, Jasak H, Andersson M, Pharoah JG, Lehnert W (2018) Stability issues of fuel cell models in the activation and concentration regimes. J Electrochem Energy Conv Storage 15:041008 Beale SB, Reimer U, Froningm D, Jasak H, Andersson M, Pharoah JG, Lehnert W (2018) Stability issues of fuel cell models in the activation and concentration regimes. J Electrochem Energy Conv Storage 15:041008
go back to reference Bertei A, Nucci B, Nicolella C (2013) Microstructure modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem Eng Sci 101:175–190CrossRef Bertei A, Nucci B, Nicolella C (2013) Microstructure modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes. Chem Eng Sci 101:175–190CrossRef
go back to reference Chan SH, Xia ZT (2001) Anode micro model of solid oxide fuel cell. J Electrochem Soc 148:A388–A394CrossRef Chan SH, Xia ZT (2001) Anode micro model of solid oxide fuel cell. J Electrochem Soc 148:A388–A394CrossRef
go back to reference Costamagna P, Costa P, Antonucci V (1998) Micro-modelling of solid oxide fuel cell electrodes. Electrochim Acta 43:375–394CrossRef Costamagna P, Costa P, Antonucci V (1998) Micro-modelling of solid oxide fuel cell electrodes. Electrochim Acta 43:375–394CrossRef
go back to reference Ferguson JR, Fiard JM, Herbin R (1996) Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J Power Sources 58:109–122CrossRef Ferguson JR, Fiard JM, Herbin R (1996) Three-dimensional numerical simulation for various geometries of solid oxide fuel cells. J Power Sources 58:109–122CrossRef
go back to reference Hajimolana SA, Hussain MA, Ashri Wan Daud WM, Soroush M, Shamiri A (2011) Mathematical modeling of solid oxide fuel cells: a review. Renew Sust Energy Rev 15:1893–1917 Hajimolana SA, Hussain MA, Ashri Wan Daud WM, Soroush M, Shamiri A (2011) Mathematical modeling of solid oxide fuel cells: a review. Renew Sust Energy Rev 15:1893–1917
go back to reference Hussain MM, Li X, Dincer I (2006) Mathematical modeling of planar solid oxide fuel cell. J Power Sour 161:1012–1022CrossRef Hussain MM, Li X, Dincer I (2006) Mathematical modeling of planar solid oxide fuel cell. J Power Sour 161:1012–1022CrossRef
go back to reference Janardhanan VM, Deutschmann O (2006) CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J Power Sources 162:1192–1202CrossRef Janardhanan VM, Deutschmann O (2006) CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes. J Power Sources 162:1192–1202CrossRef
go back to reference Jeon DH (2019) Computational fluid dynamics simulation of anode-supported solid oxide fuel cells with implementing complete overpotential model. Energy 188:116050 Jeon DH (2019) Computational fluid dynamics simulation of anode-supported solid oxide fuel cells with implementing complete overpotential model. Energy 188:116050
go back to reference Kone J-P, Zhang X, Yan Y, Hu G, Ahmadi G (2018) CFD modeling and simulation of PEM fuel cell using OpenFOAM. Energy Procedia 145:64–69CrossRef Kone J-P, Zhang X, Yan Y, Hu G, Ahmadi G (2018) CFD modeling and simulation of PEM fuel cell using OpenFOAM. Energy Procedia 145:64–69CrossRef
go back to reference Kong W, Gao X, Liu S, Su S, Chen D (2014) Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell. Energies 7:295–313CrossRef Kong W, Gao X, Liu S, Su S, Chen D (2014) Optimization of the interconnect ribs for a cathode-supported solid oxide fuel cell. Energies 7:295–313CrossRef
go back to reference Le AD, Beale SB, Pharoah JG (2015) Validation of a solid oxide fuel cell model on the international energy agency benchmark case with hydrogen fuel. Fuel Cells 15:27–41CrossRef Le AD, Beale SB, Pharoah JG (2015) Validation of a solid oxide fuel cell model on the international energy agency benchmark case with hydrogen fuel. Fuel Cells 15:27–41CrossRef
go back to reference Nagata S, Momma A, Kato T, Kasuga Y (2001) Numerical analysis of output characteristics of tubular SOFC with internal reformer. J Power Sour 101:60–71CrossRef Nagata S, Momma A, Kato T, Kasuga Y (2001) Numerical analysis of output characteristics of tubular SOFC with internal reformer. J Power Sour 101:60–71CrossRef
go back to reference Nam JH, Jeon DH (2006) A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cell. Electrochim Acta 51:3446–3460CrossRef Nam JH, Jeon DH (2006) A comprehensive micro-scale model for transport and reaction in intermediate temperature solid oxide fuel cell. Electrochim Acta 51:3446–3460CrossRef
go back to reference Ni M (2012) Modeling of SOFC running on partially pre-reformed gas mixture. Intl J Hydrog Energy 37:1731–1745CrossRef Ni M (2012) Modeling of SOFC running on partially pre-reformed gas mixture. Intl J Hydrog Energy 37:1731–1745CrossRef
go back to reference Nishida RT, Beale SB, Pharoah JG, de Haart LGJ, Blum L (2018) Three-dimensional modelling and experimental validation of the Julich Mark-F solid oxide fuel cells. J Power Sour 373:203–210CrossRef Nishida RT, Beale SB, Pharoah JG, de Haart LGJ, Blum L (2018) Three-dimensional modelling and experimental validation of the Julich Mark-F solid oxide fuel cells. J Power Sour 373:203–210CrossRef
go back to reference Pramuanjaroenkij A, Kakac S, Zhou XY (2008) Mathematical analysis of planar solid oxide fuel cells. Intl J Hydrog Energy 33:2547–2565CrossRef Pramuanjaroenkij A, Kakac S, Zhou XY (2008) Mathematical analysis of planar solid oxide fuel cells. Intl J Hydrog Energy 33:2547–2565CrossRef
go back to reference Recknagle KP, Williford RE, Chick LA, Rector DR, Khaleel MA (2003) Three-dimensional thermos-fluid electrochemical modeling of planar SOFC stacks. J Power Sour 113:109–114CrossRef Recknagle KP, Williford RE, Chick LA, Rector DR, Khaleel MA (2003) Three-dimensional thermos-fluid electrochemical modeling of planar SOFC stacks. J Power Sour 113:109–114CrossRef
go back to reference Vijay P, Tade MO, Shao Z, Ni M (2017) Modelling the triple phase boundary length in infiltrated SOFC electrodes. Intl J Hydrog Energy 42:28836–28851CrossRef Vijay P, Tade MO, Shao Z, Ni M (2017) Modelling the triple phase boundary length in infiltrated SOFC electrodes. Intl J Hydrog Energy 42:28836–28851CrossRef
go back to reference Yakabe H, Ogiwara T, Hishinuma M, Yasuda I (2001) 3-D model calculation for planar SOFC. J Power Sour 102:144–154CrossRef Yakabe H, Ogiwara T, Hishinuma M, Yasuda I (2001) 3-D model calculation for planar SOFC. J Power Sour 102:144–154CrossRef
go back to reference Zhang S, Reimer U, Beale SB, Lehnert W, Stolten D (2018) Modeling polymer electrolyte fuel cells: a high precision analysis. Appl Energy 233–234:1094–1103 Zhang S, Reimer U, Beale SB, Lehnert W, Stolten D (2018) Modeling polymer electrolyte fuel cells: a high precision analysis. Appl Energy 233–234:1094–1103
go back to reference Zhu H, Kee RJ, Janardhanan VM, Deutschmann O, Goodwin DG (2005) Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J Electrochem Soc 152:A2427–A2440CrossRef Zhu H, Kee RJ, Janardhanan VM, Deutschmann O, Goodwin DG (2005) Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J Electrochem Soc 152:A2427–A2440CrossRef
Metadata
Title
Solid Oxide Fuel Cell Modeling with OpenFOAM®
Author
Dong Hyup Jeon
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-92178-1_4