Skip to main content
Top

2015 | OriginalPaper | Chapter

15. Solid State Microjoining Processes in Manufacturing

Authors : Sharon Mui Ling Nai, Murali Sarangapani, Johnny Yeung

Published in: Handbook of Manufacturing Engineering and Technology

Publisher: Springer London

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents the solid-state bonding technologies, in particular the thermocompression bonding and thermosonic bonding technologies, which are used to form microjoints in the electronics industry. The diffusion bonding mechanism and the key bonding conditions required to form reliable joints are presented. Moreover, the recent progresses in the thermocompression bonding and thermosonic ball-wedge bonding technologies are highlighted. Lastly, the effects of different bonding materials and their surface characteristics on the joints’ performance are also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ang XF, Zhang GG, Wei J, Chen Z, Wong CC (2006) Temperature and pressure dependence in thermocompression gold stud bonding. Thin Solid Films 504:379–383CrossRef Ang XF, Zhang GG, Wei J, Chen Z, Wong CC (2006) Temperature and pressure dependence in thermocompression gold stud bonding. Thin Solid Films 504:379–383CrossRef
go back to reference Ang XF, Li FY, Tan WL, Chen Z, Wong CC, Wei J (2007) Self-assembled monolayers for reduced temperature direct metal thermocompression bonding. Appl Phys Lett 91(6):061913CrossRef Ang XF, Li FY, Tan WL, Chen Z, Wong CC, Wei J (2007) Self-assembled monolayers for reduced temperature direct metal thermocompression bonding. Appl Phys Lett 91(6):061913CrossRef
go back to reference Ang XF, Chen Z, Wong CC, Wei J (2008a) Effect of chain length in low temperature gold-gold bonding by self-assembled monolayers. Appl Phys Lett 92(13):131913CrossRef Ang XF, Chen Z, Wong CC, Wei J (2008a) Effect of chain length in low temperature gold-gold bonding by self-assembled monolayers. Appl Phys Lett 92(13):131913CrossRef
go back to reference Ang XF, Li FY, Wei J, Tan WL, Wong CC (2008b) A thermal and passivation study of self-assembled monolayers on thin gold films. Thin Solid Films 516(16):5721–5724CrossRef Ang XF, Li FY, Wei J, Tan WL, Wong CC (2008b) A thermal and passivation study of self-assembled monolayers on thin gold films. Thin Solid Films 516(16):5721–5724CrossRef
go back to reference Ang XF, Wei J, Chen Z, Wong CC (2009) Enabling low temperature copper bonding with an organic monolayer. Adv Mater Res 74:133–136CrossRef Ang XF, Wei J, Chen Z, Wong CC (2009) Enabling low temperature copper bonding with an organic monolayer. Adv Mater Res 74:133–136CrossRef
go back to reference ASM Handbook (1995) Alloy phase diagram, vol 3. ASM International, Materials Park ASM Handbook (1995) Alloy phase diagram, vol 3. ASM International, Materials Park
go back to reference Breach CD (2010) What is the future of bonding wire? Will Cu entirely replace Au? Gold Bullet 43(3):150–168CrossRef Breach CD (2010) What is the future of bonding wire? Will Cu entirely replace Au? Gold Bullet 43(3):150–168CrossRef
go back to reference Camenschi G, Sandru N (1980) Dynamic aspects in wire drawing problem. Lett Appl Eng Sci 18:999–1007MATH Camenschi G, Sandru N (1980) Dynamic aspects in wire drawing problem. Lett Appl Eng Sci 18:999–1007MATH
go back to reference Chew YH, Wong CC, Breach CD, Wulff F, Mhaisalkar SG, Pang CI, Saraswati (2004) Effects of Ca and Pd on mechanical properties and stored energy of hard drawn Au bonding wire. Thin Solid Films 462–463:346–350. doi:10.1016/j.tsf.2004.05.079CrossRef Chew YH, Wong CC, Breach CD, Wulff F, Mhaisalkar SG, Pang CI, Saraswati (2004) Effects of Ca and Pd on mechanical properties and stored energy of hard drawn Au bonding wire. Thin Solid Films 462–463:346–350. doi:10.1016/j.tsf.2004.05.079CrossRef
go back to reference Chin LC, Ang XF, Wei J, Chen Z, Wong CC (2006) Enhancing direct metal bonding with self-assembled monolayers. Thin Solid Films 504(1–2):367–370CrossRef Chin LC, Ang XF, Wei J, Chen Z, Wong CC (2006) Enhancing direct metal bonding with self-assembled monolayers. Thin Solid Films 504(1–2):367–370CrossRef
go back to reference Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, Reading
go back to reference Derby B (1981) Theoretical model of diffusion bonding. PhD thesis, Cambridge University, Cambridge Derby B (1981) Theoretical model of diffusion bonding. PhD thesis, Cambridge University, Cambridge
go back to reference Fan C, Abys JA, Blair A (1999) Au and Al wire bonding to Pd surface finishes. Circuit World 25(3):23–27CrossRef Fan C, Abys JA, Blair A (1999) Au and Al wire bonding to Pd surface finishes. Circuit World 25(3):23–27CrossRef
go back to reference Fontana MG (1987) Corrosion engineering, 3rd edn. McGraw-Hill Book, New York Fontana MG (1987) Corrosion engineering, 3rd edn. McGraw-Hill Book, New York
go back to reference Gould JE (2008) Mechanisms of solid-state bonding processes. In: Zhou Y (ed) Microjoining and nanojoining, pp 3–24 Gould JE (2008) Mechanisms of solid-state bonding processes. In: Zhou Y (ed) Microjoining and nanojoining, pp 3–24
go back to reference Harman GG (1997) Wire bonding in microelectronics – materials, processes, reliability and yield, 2nd edn. McGraw Hill, New York Harman GG (1997) Wire bonding in microelectronics – materials, processes, reliability and yield, 2nd edn. McGraw Hill, New York
go back to reference Huang IJ, Ayyaswamy PS, Cohen IM (1995) Melting and solidification of thin wires: a class of phase-change problems with a mobile interface. Int J Heat Mass Transf 38(9):1637–1659CrossRefMATH Huang IJ, Ayyaswamy PS, Cohen IM (1995) Melting and solidification of thin wires: a class of phase-change problems with a mobile interface. Int J Heat Mass Transf 38(9):1637–1659CrossRefMATH
go back to reference Johnson RW, Palmer MJ, Bozack MJ, Isaacs-Smith T (1999) Thermosonic Au wire bonding to laminate substrates with Pd surface finishes. IEEE Trans Elec Pack Manuf 22(1):7–15CrossRef Johnson RW, Palmer MJ, Bozack MJ, Isaacs-Smith T (1999) Thermosonic Au wire bonding to laminate substrates with Pd surface finishes. IEEE Trans Elec Pack Manuf 22(1):7–15CrossRef
go back to reference Kazakov NF (1985) Diffusion bonding of materials. Mir Publishers, Moscow Kazakov NF (1985) Diffusion bonding of materials. Mir Publishers, Moscow
go back to reference Kim YG, Pavuluri JK, White JR, Busch-Vishniac IJ, Masada GY (1995) Thermocompression bonding effects on bump-pad adhesion. IEEE Trans Comp, Packag Manuf Technol 18:192–199CrossRef Kim YG, Pavuluri JK, White JR, Busch-Vishniac IJ, Masada GY (1995) Thermocompression bonding effects on bump-pad adhesion. IEEE Trans Comp, Packag Manuf Technol 18:192–199CrossRef
go back to reference Kim TH, Howlader MMR, Itoh T, Suga T (2003) Room temperature Cu-Cu direct bonding using surface activated bonding method. J Vac Sci Technol A 21(2):449–453CrossRef Kim TH, Howlader MMR, Itoh T, Suga T (2003) Room temperature Cu-Cu direct bonding using surface activated bonding method. J Vac Sci Technol A 21(2):449–453CrossRef
go back to reference Ko CT, Chen KN (2012) Low temperature bonding technology for 3D integration. Microelectron Reliab 52(2):302–311CrossRef Ko CT, Chen KN (2012) Low temperature bonding technology for 3D integration. Microelectron Reliab 52(2):302–311CrossRef
go back to reference Krabbenborg B (1999) High current bond design rules based on bond pad degradation and fusing of the wire. Microelecron Rel 39:77–88CrossRef Krabbenborg B (1999) High current bond design rules based on bond pad degradation and fusing of the wire. Microelecron Rel 39:77–88CrossRef
go back to reference Li J, Foo QH, Ang XF, Wei J, Wong CC (2009) Chain length dependence of SAMs-assisted copper thermocompression bonding. Adv Mater Res 74:291–294CrossRef Li J, Foo QH, Ang XF, Wei J, Wong CC (2009) Chain length dependence of SAMs-assisted copper thermocompression bonding. Adv Mater Res 74:291–294CrossRef
go back to reference Li J, Ang XF, Lee KH, Romanato F, Wong CC (2010) In-situ monitoring of the thermal desorption of alkanethiols with surface plasmon resonance spectroscopy (SPRS). J Nanosci Nanotechnol 10:1–5CrossRef Li J, Ang XF, Lee KH, Romanato F, Wong CC (2010) In-situ monitoring of the thermal desorption of alkanethiols with surface plasmon resonance spectroscopy (SPRS). J Nanosci Nanotechnol 10:1–5CrossRef
go back to reference Lin YW, Wang RY, Ke WB, Wang IS, Chiu YT, Lu KC, Lin KL, Lai YS (2012) The Pd distribution and Cu flow pattern of the Pd plated Cu wire bond and their effect on the nanoindentation. Mater Sci Eng A 543:151–157CrossRef Lin YW, Wang RY, Ke WB, Wang IS, Chiu YT, Lu KC, Lin KL, Lai YS (2012) The Pd distribution and Cu flow pattern of the Pd plated Cu wire bond and their effect on the nanoindentation. Mater Sci Eng A 543:151–157CrossRef
go back to reference Loh E (1983) Physical analysis of data on fused open bond wires. IEEE Trans CHMT 6(2):209–217MathSciNet Loh E (1983) Physical analysis of data on fused open bond wires. IEEE Trans CHMT 6(2):209–217MathSciNet
go back to reference Maiocco L, Smyers D, Munroe PR, Baker I (1990) Correlation between electrical resistance and microstructure in Au wire bonds on Al films. IEEE Trans CHMT 13(3):592–595 Maiocco L, Smyers D, Munroe PR, Baker I (1990) Correlation between electrical resistance and microstructure in Au wire bonds on Al films. IEEE Trans CHMT 13(3):592–595
go back to reference Mertol A (1995) Estimation of Al and Au bond wire fusing current and fusing time. IEEE Trans Comp Pack Manu Tech B 18(1):210–214CrossRef Mertol A (1995) Estimation of Al and Au bond wire fusing current and fusing time. IEEE Trans Comp Pack Manu Tech B 18(1):210–214CrossRef
go back to reference Murali S (2006) Formation and growth of intermetallics in thermosonic wire bonds: Significance of vacancy-solute binding energy. J Alloys Comp 426:200–204CrossRef Murali S (2006) Formation and growth of intermetallics in thermosonic wire bonds: Significance of vacancy-solute binding energy. J Alloys Comp 426:200–204CrossRef
go back to reference Murali S, Srikanth N (2006) Acid decapsulation of epoxy molded IC packages with Cu wire bonds. IEEE Trans Elec Pack Manuf 29(3):179–183CrossRef Murali S, Srikanth N (2006) Acid decapsulation of epoxy molded IC packages with Cu wire bonds. IEEE Trans Elec Pack Manuf 29(3):179–183CrossRef
go back to reference Murali S, Srikanth N, Charles JV III (2003a) Grains, deformation substructures, and slip bands observed in thermosonic Cu ball bonding. Mater Character 50:39–50CrossRef Murali S, Srikanth N, Charles JV III (2003a) Grains, deformation substructures, and slip bands observed in thermosonic Cu ball bonding. Mater Character 50:39–50CrossRef
go back to reference Murali S, Srikanth N, Charles JV III (2003b) An analysis of intermetallic formation of Au and Cu ball bonding on thermal aging. Mater Res Bull 38:637–646CrossRef Murali S, Srikanth N, Charles JV III (2003b) An analysis of intermetallic formation of Au and Cu ball bonding on thermal aging. Mater Res Bull 38:637–646CrossRef
go back to reference Murali S, Srikanth N, Charles JV III (2004) Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal ageing of thermosonic wire bonds. Mater Lett 58:3096–3101CrossRef Murali S, Srikanth N, Charles JV III (2004) Effect of wire size on the formation of intermetallics and Kirkendall voids on thermal ageing of thermosonic wire bonds. Mater Lett 58:3096–3101CrossRef
go back to reference Murali S, Srikanth N, Wong YM, Charles JV III (2007) Fundamentals of thermosonic Cu wire bonding in microelectronics packaging. J Mater Sci 42:615–623. doi:10.1007/s10853-006-1148-7CrossRef Murali S, Srikanth N, Wong YM, Charles JV III (2007) Fundamentals of thermosonic Cu wire bonding in microelectronics packaging. J Mater Sci 42:615–623. doi:10.1007/s10853-006-1148-7CrossRef
go back to reference Onuki J, Suwa M, Iizuka T, Okikawa S (1986) Ball formation of Al ball bonding. IEEE Trans CHMT 8(4):559–563 Onuki J, Suwa M, Iizuka T, Okikawa S (1986) Ball formation of Al ball bonding. IEEE Trans CHMT 8(4):559–563
go back to reference Oppermann H, Dietrich L (2012) Nanoporous gold bumps for low temperature bonding. Microelectron Reliab 52(2):356–360CrossRef Oppermann H, Dietrich L (2012) Nanoporous gold bumps for low temperature bonding. Microelectron Reliab 52(2):356–360CrossRef
go back to reference Prasad SK (2004) Advanced wirebond interconnection technology. Kluwer Academic, Boston Prasad SK (2004) Advanced wirebond interconnection technology. Kluwer Academic, Boston
go back to reference Qi G, Zhang S (1997) Recrystallization of Au alloys for producing fine bonding wires. J Mater Proc Tech 68:288–293CrossRef Qi G, Zhang S (1997) Recrystallization of Au alloys for producing fine bonding wires. J Mater Proc Tech 68:288–293CrossRef
go back to reference QiJia Chen, Pagba A, Reynoso D, Thomas S, Toc HJ (2010) Cu wire and beyond – Ag wire an alternative to Cu? In: 12th electronic pack technology conference, Singapore, pp 591–596 QiJia Chen, Pagba A, Reynoso D, Thomas S, Toc HJ (2010) Cu wire and beyond – Ag wire an alternative to Cu? In: 12th electronic pack technology conference, Singapore, pp 591–596
go back to reference Srikanth N, Premkumar J, Sivakumar M, Wong YM, Charles JV III (2007) Effect of wire purity on Cu wire bonding. In: 9th electronic pack technology conference, Singapore, pp 755–759 Srikanth N, Premkumar J, Sivakumar M, Wong YM, Charles JV III (2007) Effect of wire purity on Cu wire bonding. In: 9th electronic pack technology conference, Singapore, pp 755–759
go back to reference Su P, Seki H, Ping C, Zenbutsu S, Itoh S, Huang L, Liao N, Liu B, Chen C, Tai W, Tseng A (2011) An evaluation of effects of molding compound properties on reliability of Cu wire components. In: IEEE electronic components and technology conference, Lake Buena Vista, FL, pp 363–369 (978-1-61284-498-5/11) Su P, Seki H, Ping C, Zenbutsu S, Itoh S, Huang L, Liao N, Liu B, Chen C, Tai W, Tseng A (2011) An evaluation of effects of molding compound properties on reliability of Cu wire components. In: IEEE electronic components and technology conference, Lake Buena Vista, FL, pp 363–369 (978-1-61284-498-5/11)
go back to reference Taklo MMV, Storås P, Schjølberg-Henriksen K, Hasting HK, Jakobsen H (2004) Strong, high-yield and low-temperature thermocompression silicon wafer-level bonding with gold. J Micromech Microeng 14:884–890CrossRef Taklo MMV, Storås P, Schjølberg-Henriksen K, Hasting HK, Jakobsen H (2004) Strong, high-yield and low-temperature thermocompression silicon wafer-level bonding with gold. J Micromech Microeng 14:884–890CrossRef
go back to reference Tan CS, Lim DF, Singh SG, Goulet SK, Bergkvist M (2009) Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl Phys Lett 95:192108CrossRef Tan CS, Lim DF, Singh SG, Goulet SK, Bergkvist M (2009) Cu–Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol. Appl Phys Lett 95:192108CrossRef
go back to reference Tang LJ, Ho HM, Zhang YJ, Lee YM, Lee CW (2010) Investigation of Pd distribution on the free air ball of Pd coated Cu wire. In: 12th electronic pack technology conference, Singapore, pp 777–781 Tang LJ, Ho HM, Zhang YJ, Lee YM, Lee CW (2010) Investigation of Pd distribution on the free air ball of Pd coated Cu wire. In: 12th electronic pack technology conference, Singapore, pp 777–781
go back to reference Tanna S, Pisigan JL, Song WH, Halmo C, Persic J, Mayer M (2012) Low cost Pd coated Ag bonding wire for high quality FAB in air. In: Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, San Diego, CA, pp 1103–1109 (978-1-4673-1965-2/12) Tanna S, Pisigan JL, Song WH, Halmo C, Persic J, Mayer M (2012) Low cost Pd coated Ag bonding wire for high quality FAB in air. In: Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, San Diego, CA, pp 1103–1109 (978-1-4673-1965-2/12)
go back to reference Tench DM (1994) Solderability assessment via SERA. J App Electrochem 24:46–50 Tench DM (1994) Solderability assessment via SERA. J App Electrochem 24:46–50
go back to reference Tsau CH (2003) Fabrication and characterization of wafer-level gold thermocompression bonding. MIT, Cambridge, MA Tsau CH (2003) Fabrication and characterization of wafer-level gold thermocompression bonding. MIT, Cambridge, MA
go back to reference Tsau CH, Spearing SM, Schmidt MA (2002) Fabrication of wafer-level thermocompression bonds. J Microelectromech Syst 11(6):641–647CrossRef Tsau CH, Spearing SM, Schmidt MA (2002) Fabrication of wafer-level thermocompression bonds. J Microelectromech Syst 11(6):641–647CrossRef
go back to reference Tsau CH, Spearing SM, Schmidt MA (2004) Characterization of wafer-level thermocompression bonds. IEEE J Microelectromech Syst 13(6):963–971CrossRef Tsau CH, Spearing SM, Schmidt MA (2004) Characterization of wafer-level thermocompression bonds. IEEE J Microelectromech Syst 13(6):963–971CrossRef
go back to reference Wang PI, Lee SH, Parker TC, Frey MD, Karabacak T, Lu JQ, Lu TM (2009) Low temperature bonding by copper nanorod array. Electrochem Solid-State Lett 12(4):H138–H141CrossRef Wang PI, Lee SH, Parker TC, Frey MD, Karabacak T, Lu JQ, Lu TM (2009) Low temperature bonding by copper nanorod array. Electrochem Solid-State Lett 12(4):H138–H141CrossRef
go back to reference Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z (2009) A re-examination of the mechanism of thermosonic Cu ball bonding on Al metallization pads. Scr Mater 61:165–168CrossRef Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z (2009) A re-examination of the mechanism of thermosonic Cu ball bonding on Al metallization pads. Scr Mater 61:165–168CrossRef
go back to reference Zhong ZW (2009) Wire bonding using Cu wire. Microelectron Int 26(1):10–16CrossRef Zhong ZW (2009) Wire bonding using Cu wire. Microelectron Int 26(1):10–16CrossRef
go back to reference Zompi A, Cipparrone M, Levi R (1991) Computer aided wire drawing. Ann CIRP 40(1):319–322CrossRef Zompi A, Cipparrone M, Levi R (1991) Computer aided wire drawing. Ann CIRP 40(1):319–322CrossRef
Metadata
Title
Solid State Microjoining Processes in Manufacturing
Authors
Sharon Mui Ling Nai
Murali Sarangapani
Johnny Yeung
Copyright Year
2015
Publisher
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4670-4_60

Premium Partners