Skip to main content
Top

2021 | OriginalPaper | Chapter

Solution of Partial Differential Equations on Radial Basis Functions Networks

Authors : Mohie Alqezweeni, Vladimir Gorbachenko

Published in: Proceedings of International Scientific Conference on Telecommunications, Computing and Control

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The solution of boundary value problems described by partial differential equations on networks of radial basis functions is considered. An analysis of gradient learning algorithms for radial basis functions networks showed that the widely used first-order method, the gradient descent method, does not provide a high learning speed and solution accuracy. The fastest method of the second order, the trust region method, is very complex. A learning algorithm based on the Levenberg–Marquardt method is proposed. The proposed algorithm, with a simpler implementation, showed comparable results in comparison with the trust region method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. Nc-Race 18 95, 6–15 (2014) Grieves, M.: Digital twin: manufacturing excellence through virtual factory replication. Nc-Race 18 95, 6–15 (2014)
2.
go back to reference Madni, A., Madni, C., Lucero, S.: Leveraging digital twin technology in model-based systems engineering. Systems 7(1), 7 (2019)CrossRef Madni, A., Madni, C., Lucero, S.: Leveraging digital twin technology in model-based systems engineering. Systems 7(1), 7 (2019)CrossRef
3.
go back to reference Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, USA (1993) Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, USA (1993)
4.
go back to reference Mazumder, S.: Numerical methods for partial differential equations: finite difference and finite volume methods. In: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, pp. 1–461. Elsevier, Amsterdam (2015) Mazumder, S.: Numerical methods for partial differential equations: finite difference and finite volume methods. In: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods, pp. 1–461. Elsevier, Amsterdam (2015)
5.
go back to reference Tolstykh, A.I., Shirobokov, D.A.: Meshless method based on radial basis functions. Comput. Math. Math. Phys. 45(8), 1447–1454 (2005)MathSciNetMATH Tolstykh, A.I., Shirobokov, D.A.: Meshless method based on radial basis functions. Comput. Math. Math. Phys. 45(8), 1447–1454 (2005)MathSciNetMATH
6.
go back to reference Vasilyev, A., Tarkhov, D., Malykhina, G.: Methods of creating digital twins based on neural network modeling. Mod. Inf. Technol. IT-Educ. 14(3), 521–532 (2018) Vasilyev, A., Tarkhov, D., Malykhina, G.: Methods of creating digital twins based on neural network modeling. Mod. Inf. Technol. IT-Educ. 14(3), 521–532 (2018)
7.
go back to reference Griebel, M., Schweitzer, M.A.: Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering (2007) Griebel, M., Schweitzer, M.A.: Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering (2007)
8.
go back to reference Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2004) Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2004)
9.
go back to reference Chen, W., Fu, Z.-J.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Berlin (2014) Chen, W., Fu, Z.-J.: Recent Advances in Radial Basis Function Collocation Methods. Springer, Berlin (2014)
10.
go back to reference Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer, Berlin (2015) Yadav, N., Yadav, A., Kumar, M.: An Introduction to Neural Network Methods for Differential Equations. Springer, Berlin (2015)
11.
go back to reference Aggarwal, C.C.: Neural Networks and Deep Learning. Springer International Publishing, Berlin (2018) Aggarwal, C.C.: Neural Networks and Deep Learning. Springer International Publishing, Berlin (2018)
12.
go back to reference Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation by growing radial basis function neural networks. Neural Netw. 16(5–6), 729–734 (2003)CrossRef Jianyu, L., Siwei, L., Yingjian, Q., Yaping, H.: Numerical solution of elliptic partial differential equation by growing radial basis function neural networks. Neural Netw. 16(5–6), 729–734 (2003)CrossRef
13.
go back to reference Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Meth. Eng. 62(6), 824–852 (2005)MathSciNetCrossRef Mai-Duy, N.: Solving high order ordinary differential equations with radial basis function networks. Int. J. Numer. Meth. Eng. 62(6), 824–852 (2005)MathSciNetCrossRef
14.
go back to reference Vasiliev, A.N., Tarkhov, D.A.: Neural Network Modeling: Principles. Algorithms. Applications. St. Petersburg Polytechnic University Publishing House (2009) Vasiliev, A.N., Tarkhov, D.A.: Neural Network Modeling: Principles. Algorithms. Applications. St. Petersburg Polytechnic University Publishing House (2009)
15.
go back to reference Gorbachenko, V.I., Zhukov, M.V.: Solving boundary value problems of mathematical physics using radial basis function networks. Comput. Math. Math. Phys. 57(1), 145–155 (2017)MathSciNetCrossRef Gorbachenko, V.I., Zhukov, M.V.: Solving boundary value problems of mathematical physics using radial basis function networks. Comput. Math. Math. Phys. 57(1), 145–155 (2017)MathSciNetCrossRef
16.
go back to reference Gorbachenko, V.I., Lazovskaya, T.V., Tarkhov, D.A., Vasilyev, A.N., Zhukov, M.V.: Neural network technique in some inverse problems of mathematical physics. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9719, pp. 310–316. Springer, Berlin (2016) Gorbachenko, V.I., Lazovskaya, T.V., Tarkhov, D.A., Vasilyev, A.N., Zhukov, M.V.: Neural network technique in some inverse problems of mathematical physics. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9719, pp. 310–316. Springer, Berlin (2016)
17.
go back to reference Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45(1–4), 345–368 (2007)MathSciNetCrossRef Fasshauer, G.E., Zhang, J.G.: On choosing “optimal” shape parameters for RBF approximation. Numer. Algorithms 45(1–4), 345–368 (2007)MathSciNetCrossRef
18.
go back to reference Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)MathSciNetCrossRef Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)MathSciNetCrossRef
19.
go back to reference Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)MathSciNetCrossRef Kansa, E.J.: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)MathSciNetCrossRef
20.
go back to reference Niyogi, P., Girosi, F.: On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comput. 8(4), 819–842 (1996)CrossRef Niyogi, P., Girosi, F.: On the relationship between generalization error, hypothesis complexity, and sample complexity for radial basis functions. Neural Comput. 8(4), 819–842 (1996)CrossRef
21.
go back to reference Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, Hoboken (2005) Watkins, D.S.: Fundamentals of Matrix Computations. Wiley, Hoboken (2005)
22.
go back to reference Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016) Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
23.
go back to reference Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Emerald Group Publishing, UK (1982) Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Emerald Group Publishing, UK (1982)
24.
go back to reference Jia, W., Zhao, D., Shen, T., Su, C., Hu, C., Zhao, Y.: A new optimized GA-RBF neural network algorithm. Comput. Intell. Neurosci. 2014, 1–6, Article ID 982045 (2014) Jia, W., Zhao, D., Shen, T., Su, C., Hu, C., Zhao, Y.: A new optimized GA-RBF neural network algorithm. Comput. Intell. Neurosci. 2014, 1–6, Article ID 982045 (2014)
26.
go back to reference Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Revue Française d’informatique et de Recherche Opérationnelle. Série Rouge 3(16), 35–43 (1969) Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Revue Française d’informatique et de Recherche Opérationnelle. Série Rouge 3(16), 35–43 (1969)
27.
go back to reference Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006) Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)
28.
go back to reference Zhang, L., Li, K., Wang, S.: An improved conjugate gradient algorithm for radial basis function (RBF) networks modelling. In: Proceedings of the 2012 UKACC International Conference on Control, CONTROL 2012, pp. 19–23 (2012) Zhang, L., Li, K., Wang, S.: An improved conjugate gradient algorithm for radial basis function (RBF) networks modelling. In: Proceedings of the 2012 UKACC International Conference on Control, CONTROL 2012, pp. 19–23 (2012)
29.
go back to reference Gorbachenko, V.I., Artyukhina, E.V.: Mesh-free methods and their implementation with radial basis neural networks. Neirokomp’yutory: Razrabotka, Primentnine 11, 4–10 (2010) (in Russian) Gorbachenko, V.I., Artyukhina, E.V.: Mesh-free methods and their implementation with radial basis neural networks. Neirokomp’yutory: Razrabotka, Primentnine 11, 4–10 (2010) (in Russian)
30.
go back to reference Alqezweeni, M.M., Gorbachenko, V I., Zhukov, M.V., Jaafar, M.S.: Efficient solving of boundary value problems using radial basis function networks learned by trust region method. Int. J. Math. Math. Sci. 2018, 1–4, Article ID 9457578 (2018). Alqezweeni, M.M., Gorbachenko, V I., Zhukov, M.V., Jaafar, M.S.: Efficient solving of boundary value problems using radial basis function networks learned by trust region method. Int. J. Math. Math. Sci. 2018, 1–4, Article ID 9457578 (2018).
31.
go back to reference Elisov, L.N., Gorbachenko, V.I., Zhukov, M.V.: Learning radial basis function networks with the trust region method for boundary problems. Autom. Remote Control 79(9), 1621–1629 (2018)MathSciNetCrossRef Elisov, L.N., Gorbachenko, V.I., Zhukov, M.V.: Learning radial basis function networks with the trust region method for boundary problems. Autom. Remote Control 79(9), 1621–1629 (2018)MathSciNetCrossRef
32.
go back to reference Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. Trust Region Methods. Society for Industrial and Applied Mathematics, USA (2000) Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. Trust Region Methods. Society for Industrial and Applied Mathematics, USA (2000)
33.
go back to reference Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)MathSciNetCrossRef Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)MathSciNetCrossRef
34.
go back to reference Boyd, J.P., Gildersleeve, K.W.: Numerical experiments on the condition number of the interpolation matrices for radial basis functions. Appl. Numer. Math. 61(4), 443–459 (2011)MathSciNetCrossRef Boyd, J.P., Gildersleeve, K.W.: Numerical experiments on the condition number of the interpolation matrices for radial basis functions. Appl. Numer. Math. 61(4), 443–459 (2011)MathSciNetCrossRef
35.
go back to reference Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: 30th International Conference on Machine Learning, ICML 2013, pp. 2176–2184. International Machine Learning Society (IMLS) (2013) Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: 30th International Conference on Machine Learning, ICML 2013, pp. 2176–2184. International Machine Learning Society (IMLS) (2013)
Metadata
Title
Solution of Partial Differential Equations on Radial Basis Functions Networks
Authors
Mohie Alqezweeni
Vladimir Gorbachenko
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-6632-9_42