Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 1/2022

01-02-2022

Solvability of the Dirichlet Problem for Anisotropic Parabolic Equations in Nonconvex Domains

Author: Ar. S. Tersenov

Published in: Journal of Applied and Industrial Mathematics | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The first initial–boundary value problem for an anisotropic parabolic equation with time-dependent anisotropy exponents in a nonconvex domain is considered. For this equation, sufficient conditions for the existence and uniqueness of a viscosity solution Lipschitz continuous in the space variables and Hölder continuous in time are stated.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. Acerbi and G. Mingione, “Regularity results for stationary electro-rheological fluids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002).MathSciNetCrossRef E. Acerbi and G. Mingione, “Regularity results for stationary electro-rheological fluids,” Arch. Ration. Mech. Anal. 164, 213–259 (2002).MathSciNetCrossRef
2.
go back to reference S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Ann. Univ. Ferrara, Sez. VII Sci. Mat. 52, 19–36 (2006).MathSciNetCrossRef S. N. Antontsev and J. F. Rodrigues, “On stationary thermo-rheological viscous flows,” Ann. Univ. Ferrara, Sez. VII Sci. Mat. 52, 19–36 (2006).MathSciNetCrossRef
3.
go back to reference K. Rajagopal and M. Ružička, “Mathematical modelling of electro-rheological fluids,” Contin. Mech. Thermodyn. 13, 59–78 (2001).CrossRef K. Rajagopal and M. Ružička, “Mathematical modelling of electro-rheological fluids,” Contin. Mech. Thermodyn. 13, 59–78 (2001).CrossRef
4.
go back to reference M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics. Vol. 1748. (Springer-Verlag, Berlin, 2000).CrossRef M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics. Vol. 1748. (Springer-Verlag, Berlin, 2000).CrossRef
5.
go back to reference R. Aboulaicha, D. Meskinea, and A. Souissia, “New diffusion models in image processing,” Comput. Math. Appl. 56, 874–882 (2008).MathSciNetCrossRef R. Aboulaicha, D. Meskinea, and A. Souissia, “New diffusion models in image processing,” Comput. Math. Appl. 56, 874–882 (2008).MathSciNetCrossRef
6.
go back to reference Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math. 66, 1383–1406 (2006).MathSciNetCrossRef Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math. 66, 1383–1406 (2006).MathSciNetCrossRef
7.
go back to reference S. Antontsev and S. Shmarev, “Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blow-up,” Atlantis Studies Differ. Equat. 4 (2015). S. Antontsev and S. Shmarev, “Evolution PDEs with nonstandard growth conditions: existence, uniqueness, localization, blow-up,” Atlantis Studies Differ. Equat. 4 (2015).
8.
go back to reference M. Belloni and B. Kawohl, “The pseudo-\( p \) Laplace eigenvalue problem and viscosity solutions as \( p\to \infty \),” ESAIM: Control Optim. Calc. Variations 10, 28–52 (2004).MathSciNetMATH M. Belloni and B. Kawohl, “The pseudo-\( p \) Laplace eigenvalue problem and viscosity solutions as \( p\to \infty \),” ESAIM: Control Optim. Calc. Variations 10, 28–52 (2004).MathSciNetMATH
9.
go back to reference I. Birindelli and F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci’s operators,” J. Elliptic Parabolic Equat. 2 (1–2), 171–187 (2017).MathSciNetMATH I. Birindelli and F. Demengel, “Existence and regularity results for fully nonlinear operators on the model of the pseudo Pucci’s operators,” J. Elliptic Parabolic Equat. 2 (1–2), 171–187 (2017).MathSciNetMATH
10.
go back to reference F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo \( p \)-Laplacian equation,” Adv. Differ. Equat. 21 (3–4), 373–400 (2016).MathSciNetMATH F. Demengel, “Lipschitz interior regularity for the viscosity and weak solutions of the pseudo \( p \)-Laplacian equation,” Adv. Differ. Equat. 21 (3–4), 373–400 (2016).MathSciNetMATH
11.
go back to reference P. Juutinen, “On the definition of viscosity solutions for parabolic equations,” Proc. Amer. Math. Soc. 129 (10), 2907–2911 (2001).MathSciNetCrossRef P. Juutinen, “On the definition of viscosity solutions for parabolic equations,” Proc. Amer. Math. Soc. 129 (10), 2907–2911 (2001).MathSciNetCrossRef
12.
go back to reference Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations,” Arch. Mathematicum 45 (1), 19–35 (2009).MathSciNetMATH Ar. S. Tersenov, “Viscosity subsolutions and supersolutions for non-uniformly and degenerate elliptic equations,” Arch. Mathematicum 45 (1), 19–35 (2009).MathSciNetMATH
13.
go back to reference P. Juutinen, P. Lindqvist, and J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation,” SIAM J. Math. Anal. 33 (3), 699–717 (2001).MathSciNetCrossRef P. Juutinen, P. Lindqvist, and J. J. Manfredi, “On the equivalence of the viscosity solutions and weak solutions for a quasilinear equation,” SIAM J. Math. Anal. 33 (3), 699–717 (2001).MathSciNetCrossRef
14.
go back to reference J. Siltakoski, “Equivalence of viscosity and weak solutions for a p-parabolic equation,” J. Evol. Equat. 21, 2047–2080 (2021).MathSciNetCrossRef J. Siltakoski, “Equivalence of viscosity and weak solutions for a p-parabolic equation,” J. Evol. Equat. 21, 2047–2080 (2021).MathSciNetCrossRef
15.
go back to reference H. Zhan, “On solutions of a parabolic equation with nonstandard growth condition, J. Function Spaces 1–10, article ID 9397620 (2020). H. Zhan, “On solutions of a parabolic equation with nonstandard growth condition, J. Function Spaces 1–10, article ID 9397620 (2020).
16.
go back to reference M. Bendahmane and K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in \( \mathbb {R}^N \) with advection and lower order terms and locally integrable data,” Potential Anal. 22, 207–227 (2005).MathSciNetCrossRef M. Bendahmane and K. H. Karlsen, “Nonlinear anisotropic elliptic and parabolic equations in \( \mathbb {R}^N \) with advection and lower order terms and locally integrable data,” Potential Anal. 22, 207–227 (2005).MathSciNetCrossRef
17.
go back to reference A. Dall’Aglio, D. Giachetti, and S. Segura de Leon, “Global existence for parabolic problems involving the \( p \)-Laplacian and a critical gradient term,” Indiana Univ. Math. J. 58 (1), 1–48 (2009).MathSciNetCrossRef A. Dall’Aglio, D. Giachetti, and S. Segura de Leon, “Global existence for parabolic problems involving the \( p \)-Laplacian and a critical gradient term,” Indiana Univ. Math. J. 58 (1), 1–48 (2009).MathSciNetCrossRef
18.
go back to reference D. G. Figueiredo, J. Sanchez, and P. Ubilla, “Quasilinear equations with dependence on the gradient,” Nonlinear Anal. Theory Methods Appl. 71, 4862–4868 (2009).MathSciNetCrossRef D. G. Figueiredo, J. Sanchez, and P. Ubilla, “Quasilinear equations with dependence on the gradient,” Nonlinear Anal. Theory Methods Appl. 71, 4862–4868 (2009).MathSciNetCrossRef
19.
go back to reference Y. Fu and N. Pan, “Existence of solutions for nonlinear parabolic problem with \( p(x) \)-growth,” J. Math. Anal. Appl. 362, 313–326 (2010).MathSciNetCrossRef Y. Fu and N. Pan, “Existence of solutions for nonlinear parabolic problem with \( p(x) \)-growth,” J. Math. Anal. Appl. 362, 313–326 (2010).MathSciNetCrossRef
20.
go back to reference L. Iturriaga, S. Lorca, and J. Sanchez, “Existence and multiplicity results for the \( p \)-Laplacian with a \( p \)-gradient term,” NoDEA, Nonlinear Differ. Equat. Appl. 15, 729–743 (2008).MathSciNetCrossRef L. Iturriaga, S. Lorca, and J. Sanchez, “Existence and multiplicity results for the \( p \)-Laplacian with a \( p \)-gradient term,” NoDEA, Nonlinear Differ. Equat. Appl. 15, 729–743 (2008).MathSciNetCrossRef
21.
go back to reference J. Li, J. Yin, and Y. Ke, “Existence of positive solutions for the \( p \)-Laplacian with \( p \)-gradient term,” J. Math. Anal. Appl. 383, 147–158 (2011).MathSciNetCrossRef J. Li, J. Yin, and Y. Ke, “Existence of positive solutions for the \( p \)-Laplacian with \( p \)-gradient term,” J. Math. Anal. Appl. 383, 147–158 (2011).MathSciNetCrossRef
22.
go back to reference M. Nakao and C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of \( m \)-Laplacian type with a nonlinear convection term,” J. Differ. Equat. 162, 224–250 (2000).MathSciNetCrossRef M. Nakao and C. Chen, “Global existence and gradient estimates for the quasilinear parabolic equations of \( m \)-Laplacian type with a nonlinear convection term,” J. Differ. Equat. 162, 224–250 (2000).MathSciNetCrossRef
23.
go back to reference H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable,” Adv. Differ. Equat. 27, 1–26 (2019).MathSciNetMATH H. Zhan, “On anisotropic parabolic equations with a nonlinear convection term depending on the spatial variable,” Adv. Differ. Equat. 27, 1–26 (2019).MathSciNetMATH
24.
go back to reference J. Zhao, “Existence and nonexistence of solutions for \( u_t=\mathrm {div}\,(|\nabla u|^{p-2}\nabla u)+f(\nabla u, u,x,t) \),” J. Math. Anal. Appl. 172 (1), 130–146 (1993).MathSciNetCrossRef J. Zhao, “Existence and nonexistence of solutions for \( u_t=\mathrm {div}\,(|\nabla u|^{p-2}\nabla u)+f(\nabla u, u,x,t) \),” J. Math. Anal. Appl. 172 (1), 130–146 (1993).MathSciNetCrossRef
25.
go back to reference V. Bögelein, F. Duzaar, and P. Marcellini, “Parabolic equations with \( p,q \)-growth,” J. Math. Pures Appl. 100 (4), 535–563 (2013).MathSciNetCrossRef V. Bögelein, F. Duzaar, and P. Marcellini, “Parabolic equations with \( p,q \)-growth,” J. Math. Pures Appl. 100 (4), 535–563 (2013).MathSciNetCrossRef
26.
go back to reference Al. S. Tersenov and Ar. S. Tersenov, “On quasilinear anisotropic parabolic equations with time-dependent exponents,” Sib. Mat. Zh. 61 (1), 201–223 (2020) [Sib. Math. J. 61, 159–177 (2020)].MathSciNetCrossRef Al. S. Tersenov and Ar. S. Tersenov, “On quasilinear anisotropic parabolic equations with time-dependent exponents,” Sib. Mat. Zh. 61 (1), 201–223 (2020) [Sib. Math. J. 61, 159–177 (2020)].MathSciNetCrossRef
27.
go back to reference Al. S. Tersenov and Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term,” J. Math. Anal. Appl. 480 (1), article ID 123386 (2019). Al. S. Tersenov and Ar. S. Tersenov, “Existence results for anisotropic quasilinear parabolic equations with time-dependent exponents and gradient term,” J. Math. Anal. Appl. 480 (1), article ID 123386 (2019).
28.
go back to reference M. G. Crandall, H. Ishii, and P. L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. Am. Math. Soc. 27, 1–67 (1992).MathSciNetCrossRef M. G. Crandall, H. Ishii, and P. L. Lions, “User’s guide to viscosity solutions of second order partial differential equations,” Bull. Am. Math. Soc. 27, 1–67 (1992).MathSciNetCrossRef
29.
go back to reference L. Wang, “On the regularity theory of fully nonlinear parabolic equations I,” Commun. Pure. Appl. Math. 45, 27–76 (1992).MathSciNetCrossRef L. Wang, “On the regularity theory of fully nonlinear parabolic equations I,” Commun. Pure. Appl. Math. 45, 27–76 (1992).MathSciNetCrossRef
30.
go back to reference S. N. Bernstein, Collected Works. Vol. III. Differential Equations, Calculus of Variations, and Geometry (Izd. Akad. Nauk SSSR, Moscow, 1960) [in Russian].MATH S. N. Bernstein, Collected Works. Vol. III. Differential Equations, Calculus of Variations, and Geometry (Izd. Akad. Nauk SSSR, Moscow, 1960) [in Russian].MATH
31.
go back to reference O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967) [in Russian].MATH O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967) [in Russian].MATH
32.
go back to reference V. N. Starovoitov and Al. S. Tersenov, “Singular and degenerate anisotropic parabolic equations with a nonlinear source,” Nonlinear Anal. Theory Methods Appl. 72 (6), 3009–3027 (2010).MathSciNetCrossRef V. N. Starovoitov and Al. S. Tersenov, “Singular and degenerate anisotropic parabolic equations with a nonlinear source,” Nonlinear Anal. Theory Methods Appl. 72 (6), 3009–3027 (2010).MathSciNetCrossRef
33.
go back to reference B. H. Gilding, “Hölder continuity of solutions of parabolic equations,” J. London Math. Soc. 13 (1), 103–106 (1976).MathSciNetCrossRef B. H. Gilding, “Hölder continuity of solutions of parabolic equations,” J. London Math. Soc. 13 (1), 103–106 (1976).MathSciNetCrossRef
34.
go back to reference S. N. Kruzhkov, “Quasilinear parabolic equations and systems with two independent variables,” in Topics in Modern Mathematics (Consultants Bureau, New York, 1985), pp. 217–272. S. N. Kruzhkov, “Quasilinear parabolic equations and systems with two independent variables,” in Topics in Modern Mathematics (Consultants Bureau, New York, 1985), pp. 217–272.
35.
go back to reference H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s,” Commun. Pure Appl. Math. 42, 14–45 (1989).MathSciNetCrossRef H. Ishii, “On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s,” Commun. Pure Appl. Math. 42, 14–45 (1989).MathSciNetCrossRef
36.
go back to reference H. Ishii and P. L. Lions, “Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,” J. Differ. Equat. 83, 26–78 (1990).MathSciNetCrossRef H. Ishii and P. L. Lions, “Viscosity solutions of fully nonlinear second-order elliptic partial differential equations,” J. Differ. Equat. 83, 26–78 (1990).MathSciNetCrossRef
Metadata
Title
Solvability of the Dirichlet Problem for Anisotropic Parabolic Equations in Nonconvex Domains
Author
Ar. S. Tersenov
Publication date
01-02-2022
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 1/2022
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S199047892201015X

Other articles of this Issue 1/2022

Journal of Applied and Industrial Mathematics 1/2022 Go to the issue

Premium Partners