Skip to main content
Top
Published in: Evolutionary Intelligence 1/2022

12-11-2020 | Research Paper

SOMDROID: android malware detection by artificial neural network trained using unsupervised learning

Authors: Arvind Mahindru, A. L. Sangal

Published in: Evolutionary Intelligence | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Android has gained its popularity due to its open-source and number of freely available apps in its official play store. Appropriate functioning of Android apps depends upon the permission or set of permissions which an app demands at the time of installation and run-time. By taking the advantage of these permissions or set of permissions, cybercriminals are developing malware-infected apps daily. In this study, we proposed a framework named as “SOMDROID”, that work on the principle of unsupervised machine learning algorithm. To develop an effective and efficient Android malware detection model, we collect 5,00,000 distinct Android apps from promised repositories and extract 1844 unique features. Further, to select significant features or feature sets, we applied six different feature ranking approaches in this study. With the selected feature or feature sets, we implement the Self-Organizing Map (SOM) algorithm of Kohonen and measure four distinct performance parameters, i.e., Intra-cluster distance, Inter-cluster distance, Accuracy and F-measure. Empirical result reveals that our proposed framework is able to detect 98.7% malware that belongs to unknown families and in addition to that the detection rate is higher by 2% when compared to commercial anti-virus scanners and frameworks proposed in the literature.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
7
Mahindru, Arvind (2020), “Android permissions data set, Android Malware, and benign Application Data set (consist of permissions and API calls)”, Mendeley Data, v3 http://​dx.​doi.​org/​10.​17632/​b4mxg7ydb7.​3.
 
12
Training parameters consider to train the SOM are as follows: value of \(\alpha\) for rough training is “0.5” and for fine tuning it is “0.05”. Starting neighborhood size is “3” for rough training and “1” for fine tuning. Size of the map consider in this study is 10 x 10. Gaussian and Hexagonal are considered as neighborhood function and relation respectively for both the rough and fine tuning. Value of \(\alpha\) scheme is set to be \(inverser_t\) and epoch limit is set to be 2000 in this study.
 
14
For calculating Accuracy and F-measure, we use traditional methods that were available in the literature having 100% labelled data set. But, in the case of SOM, it is unlabelled data set.
 
15
Experiment was performed on only 2,00,000 Android apps, obtained on the basis of user rating .
 
16
For this experiment, the size of the Android app is less than 50 MB.
 
17
Experiment was performed on Android apps having a size less than 50 MB.
 
Literature
1.
go back to reference Alkhateeb EMS (2017) Dynamic malware detection using API similarity. In: 2017 IEEE international conference on computer and information technology (CIT), IEEE, pp 297–301 Alkhateeb EMS (2017) Dynamic malware detection using API similarity. In: 2017 IEEE international conference on computer and information technology (CIT), IEEE, pp 297–301
2.
go back to reference Allix K, Bissyandé TF, Jérome Q, Klein J, Traon YL et al (2016) Empirical assessment of machine learning-based malware detectors for android. Empir Softw Eng 21(1):183–211 Allix K, Bissyandé TF, Jérome Q, Klein J, Traon YL et al (2016) Empirical assessment of machine learning-based malware detectors for android. Empir Softw Eng 21(1):183–211
3.
go back to reference Almin SB, Chatterjee M (2015) A novel approach to detect android malware. Procedia Comput Sci 45:407–417 Almin SB, Chatterjee M (2015) A novel approach to detect android malware. Procedia Comput Sci 45:407–417
4.
go back to reference Alzaylaee MK, Yerima SY, Sezer S (2017) Emulator vs real phone: android malware detection using machine learning. In: Proceedings of the 3rd ACM on international workshop on security and privacy analytics Alzaylaee MK, Yerima SY, Sezer S (2017) Emulator vs real phone: android malware detection using machine learning. In: Proceedings of the 3rd ACM on international workshop on security and privacy analytics
5.
go back to reference Andriatsimandefitra R, Tong VVT (2015) Detection and identification of android malware based on information flow monitoring. In: 2015 IEEE 2nd international conference on cyber security and cloud computing, IEEE, pp 200–203 Andriatsimandefitra R, Tong VVT (2015) Detection and identification of android malware based on information flow monitoring. In: 2015 IEEE 2nd international conference on cyber security and cloud computing, IEEE, pp 200–203
6.
go back to reference Azmoodeh A, Dehghantanha A, Choo KKR (2018) Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans Sustain Comput 4(1):88–95 Azmoodeh A, Dehghantanha A, Choo KKR (2018) Robust malware detection for internet of (battlefield) things devices using deep eigenspace learning. IEEE Trans Sustain Comput 4(1):88–95
7.
go back to reference Barrera D, Kayacik HG, Oorschot PCV, Somayaji A (2010) A methodology for empirical analysis of permission-based security models and its application to android. In: Proceedings of the 17th ACM conference on computer and communications security, pp 73–84 Barrera D, Kayacik HG, Oorschot PCV, Somayaji A (2010) A methodology for empirical analysis of permission-based security models and its application to android. In: Proceedings of the 17th ACM conference on computer and communications security, pp 73–84
8.
go back to reference Bläsing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S (2010) An android application sandbox system for suspicious software detection. In: 2010 5th international conference on malicious and unwanted software, IEEE, pp 55–62 Bläsing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S (2010) An android application sandbox system for suspicious software detection. In: 2010 5th international conference on malicious and unwanted software, IEEE, pp 55–62
9.
go back to reference Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices, pp 15–26 Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM workshop on security and privacy in smartphones and mobile devices, pp 15–26
10.
go back to reference Canbek G, Baykal N, Sagiroglu S (2017) Clustering and visualization of mobile application permissions for end users and malware analysts. In: 2017 5th international symposium on digital forensic and security (ISDFS), IEEE, pp 1–10 Canbek G, Baykal N, Sagiroglu S (2017) Clustering and visualization of mobile application permissions for end users and malware analysts. In: 2017 5th international symposium on digital forensic and security (ISDFS), IEEE, pp 1–10
11.
go back to reference Carlin D, Cowan A, O’kane P, Sezer S (2017) The effects of traditional anti-virus labels on malware detection using dynamic runtime opcodes. IEEE Access 5:17742–17752 Carlin D, Cowan A, O’kane P, Sezer S (2017) The effects of traditional anti-virus labels on malware detection using dynamic runtime opcodes. IEEE Access 5:17742–17752
12.
go back to reference Caviglione L, Gaggero M, Lalande JF, Mazurczyk W, Urbański M (2015) Seeing the unseen: revealing mobile malware hidden communications via energy consumption and artificial intelligence. IEEE Trans Inf Forensics Secur 11(4):799–810 Caviglione L, Gaggero M, Lalande JF, Mazurczyk W, Urbański M (2015) Seeing the unseen: revealing mobile malware hidden communications via energy consumption and artificial intelligence. IEEE Trans Inf Forensics Secur 11(4):799–810
13.
go back to reference Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B (2018) Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput Secur 73:326–344 Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B (2018) Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput Secur 73:326–344
14.
go back to reference Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K, Corona I, Giacinto G, Roli F (2017) Yes, machine learning can be more secure! a case study on android malware detection. IEEE Trans Dependable Secure Comput Demontis A, Melis M, Biggio B, Maiorca D, Arp D, Rieck K, Corona I, Giacinto G, Roli F (2017) Yes, machine learning can be more secure! a case study on android malware detection. IEEE Trans Dependable Secure Comput
15.
go back to reference Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2014) Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans Comput Syst 32(2):1–29 Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2014) Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM Trans Comput Syst 32(2):1–29
16.
go back to reference Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A (2013) Androsimilar: robust statistical feature signature for android malware detection. In: Proceedings of the 6th international conference on security of information and networks, pp 152–159 Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A (2013) Androsimilar: robust statistical feature signature for android malware detection. In: Proceedings of the 6th international conference on security of information and networks, pp 152–159
17.
go back to reference Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2014) Android security: a survey of issues, malware penetration, and defenses. IEEE Commun Surv Tutor 17(2):998–1022 Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2014) Android security: a survey of issues, malware penetration, and defenses. IEEE Commun Surv Tutor 17(2):998–1022
18.
go back to reference Fereidooni H, Conti M, Yao D, Sperduti A (2016) Anastasia: android malware detection using static analysis of applications. In: 2016 8th IFIP international conference on new technologies, mobility and security (NTMS), IEEE, pp 1–5 Fereidooni H, Conti M, Yao D, Sperduti A (2016) Anastasia: android malware detection using static analysis of applications. In: 2016 8th IFIP international conference on new technologies, mobility and security (NTMS), IEEE, pp 1–5
19.
go back to reference Firdaus A, Anuar NB, Karim A, Razak MFA (2018) Discovering optimal features using static analysis and a genetic search based method for android malware detection. Front Inf Technol Electron Eng 19(6):712–736 Firdaus A, Anuar NB, Karim A, Razak MFA (2018) Discovering optimal features using static analysis and a genetic search based method for android malware detection. Front Inf Technol Electron Eng 19(6):712–736
20.
go back to reference Fuchs AP, Chaudhuri A, Foster JS (2009) Scandroid: automated security certification of android applications. Manuscript, Univ of Maryland 2(3) Fuchs AP, Chaudhuri A, Foster JS (2009) Scandroid: automated security certification of android applications. Manuscript, Univ of Maryland 2(3)
21.
go back to reference Han W, Xue J, Wang Y, Liu Z, Kong Z (2019) Malinsight: a systematic profiling based malware detection framework. J Netw Comput Appl 125:236–250 Han W, Xue J, Wang Y, Liu Z, Kong Z (2019) Malinsight: a systematic profiling based malware detection framework. J Netw Comput Appl 125:236–250
22.
go back to reference Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: an intelligent android malware detection system based on structured heterogeneous information network. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1507–1515 Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: an intelligent android malware detection system based on structured heterogeneous information network. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1507–1515
23.
go back to reference Huda S, Miah S, Hassan MM, Islam R, Yearwood J, Alrubaian AM, Almogren, (2017) Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data. Inf Sci 379:211–228 Huda S, Miah S, Hassan MM, Islam R, Yearwood J, Alrubaian AM, Almogren, (2017) Defending unknown attacks on cyber-physical systems by semi-supervised approach and available unlabeled data. Inf Sci 379:211–228
24.
go back to reference Idrees F, Rajarajan M, Conti M, Chen TM, Rahulamathavan Y (2017) Pindroid: a novel android malware detection system using ensemble learning methods. Comput Secur 68:36–46 Idrees F, Rajarajan M, Conti M, Chen TM, Rahulamathavan Y (2017) Pindroid: a novel android malware detection system using ensemble learning methods. Comput Secur 68:36–46
25.
go back to reference Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. Wiley, New JerseyMATH Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. Wiley, New JerseyMATH
26.
go back to reference Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: automatic framework for android malware detection using deep learning. Digit Investig 24:S48–S59 Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: automatic framework for android malware detection using deep learning. Digit Investig 24:S48–S59
27.
go back to reference Kim T, Kang B, Rho M, Sezer S, Im EG (2018) A multimodal deep learning method for android malware detection using various features. IEEE Trans Inf Forensics Secur 14(3):773–788 Kim T, Kang B, Rho M, Sezer S, Im EG (2018) A multimodal deep learning method for android malware detection using various features. IEEE Trans Inf Forensics Secur 14(3):773–788
28.
go back to reference Kohavi R, John GH et al (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324MATH Kohavi R, John GH et al (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324MATH
29.
go back to reference Kumar L, Hota C, Mahindru A, Neti LBM (2019) Android malware prediction using extreme learning machine with different kernel functions. In: Proceedings of the Asian internet engineering conference, association for computing machinery, New York, AINTEC–19, p 33–40, https://doi.org/10.1145/3340422.3343639 Kumar L, Hota C, Mahindru A, Neti LBM (2019) Android malware prediction using extreme learning machine with different kernel functions. In: Proceedings of the Asian internet engineering conference, association for computing machinery, New York, AINTEC–19, p 33–40, https://​doi.​org/​10.​1145/​3340422.​3343639
30.
go back to reference Li J, Sun L, Yan Q, Li Z, Srisa-an W, Ye H (2018) Significant permission identification for machine-learning-based android malware detection. IEEE Trans Ind Inf 14(7):3216–3225 Li J, Sun L, Yan Q, Li Z, Srisa-an W, Ye H (2018) Significant permission identification for machine-learning-based android malware detection. IEEE Trans Ind Inf 14(7):3216–3225
31.
go back to reference Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, Veen VVD, Platzer C (2014) Andrubis–1,000,000 apps later: a view on current android malware behaviors. In: 2014 third international workshop on building analysis datasets and gathering experience returns for security (BADGERS), IEEE, pp 3–17 Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, Veen VVD, Platzer C (2014) Andrubis–1,000,000 apps later: a view on current android malware behaviors. In: 2014 third international workshop on building analysis datasets and gathering experience returns for security (BADGERS), IEEE, pp 3–17
32.
go back to reference Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method for android malware detection based on control flow graphs and machine learning algorithms. IEEE Access 7:21235–21245 Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method for android malware detection based on control flow graphs and machine learning algorithms. IEEE Access 7:21235–21245
33.
go back to reference Mahindru A, Sangal A (2019) Deepdroid: feature selection approach to detect android malware using deep learning. In: 2019 IEEE 10th international conference on software engineering and service science (ICSESS), IEEE, pp 16–19 Mahindru A, Sangal A (2019) Deepdroid: feature selection approach to detect android malware using deep learning. In: 2019 IEEE 10th international conference on software engineering and service science (ICSESS), IEEE, pp 16–19
34.
go back to reference Mahindru A, Sangal A (2020a) Dldroid: feature selection based malware detection framework for android apps developed during covid-19. Int J Emerg Technol 11(3):516–525 Mahindru A, Sangal A (2020a) Dldroid: feature selection based malware detection framework for android apps developed during covid-19. Int J Emerg Technol 11(3):516–525
35.
go back to reference Mahindru A, Sangal A (2020b) Feature-based semi-supervised learning to detect malware from android. Automated software engineering: a deep learning-based approach. Springer, Cham, pp 93–118 Mahindru A, Sangal A (2020b) Feature-based semi-supervised learning to detect malware from android. Automated software engineering: a deep learning-based approach. Springer, Cham, pp 93–118
36.
go back to reference Mahindru A, Sangal A (2020c) Gadroid: a framework for malware detection from android by using genetic algorithm as feature selection approach. Int J Adv Sci Technol 29(5):5532–5543 Mahindru A, Sangal A (2020c) Gadroid: a framework for malware detection from android by using genetic algorithm as feature selection approach. Int J Adv Sci Technol 29(5):5532–5543
37.
go back to reference Mahindru A, Sangal A (2020d) Parudroid: validation of android malware detection dataset. J Cybersecur Inf Manag 3:42–52 Mahindru A, Sangal A (2020d) Parudroid: validation of android malware detection dataset. J Cybersecur Inf Manag 3:42–52
38.
go back to reference Mahindru A, Sangal A (2020e) Perbdroid: effective malware detection model developed using machine learning classification techniques. A journey towards bio-inspired techniques in software engineering. Springer, Cham, pp 103–139 Mahindru A, Sangal A (2020e) Perbdroid: effective malware detection model developed using machine learning classification techniques. A journey towards bio-inspired techniques in software engineering. Springer, Cham, pp 103–139
39.
go back to reference Mahindru A, Singh P (2017) Dynamic permissions based android malware detection using machine learning techniques. In: Proceedings of the 10th innovations in software engineering conference, pp 202–210 Mahindru A, Singh P (2017) Dynamic permissions based android malware detection using machine learning techniques. In: Proceedings of the 10th innovations in software engineering conference, pp 202–210
40.
go back to reference Martín A, Menéndez HD, Camacho D (2017) Mocdroid: multi-objective evolutionary classifier for android malware detection. Soft Comput 21(24):7405–7415 Martín A, Menéndez HD, Camacho D (2017) Mocdroid: multi-objective evolutionary classifier for android malware detection. Soft Comput 21(24):7405–7415
41.
go back to reference Martín A, Lara-Cabrera R, Camacho D (2019) Android malware detection through hybrid features fusion and ensemble classifiers: the andropytool framework and the omnidroid dataset. Inf Fusion 52:128–142 Martín A, Lara-Cabrera R, Camacho D (2019) Android malware detection through hybrid features fusion and ensemble classifiers: the andropytool framework and the omnidroid dataset. Inf Fusion 52:128–142
42.
go back to reference Martinelli F, Mercaldo F, Saracino A (2017) Bridemaid: an hybrid tool for accurate detection of android malware. In: Proceedings of the 2017 ACM on Asia conference on computer and communications security, pp 899–901 Martinelli F, Mercaldo F, Saracino A (2017) Bridemaid: an hybrid tool for accurate detection of android malware. In: Proceedings of the 2017 ACM on Asia conference on computer and communications security, pp 899–901
43.
go back to reference Mas’ud MZ, Sahib S, Abdollah MF, Selamat SR, Yusof R (2014) Analysis of features selection and machine learning classifier in android malware detection. In: 2014 international conference on information science and applications (ICISA), IEEE, pp 1–5 Mas’ud MZ, Sahib S, Abdollah MF, Selamat SR, Yusof R (2014) Analysis of features selection and machine learning classifier in android malware detection. In: 2014 international conference on information science and applications (ICISA), IEEE, pp 1–5
44.
go back to reference McLaughlin N, del Rincon JM, Kang B, Yerima S, Miller P, Sezer S, Safaei Y, Trickel E, Zhao Z, Doupé A, et al. (2017) Deep android malware detection. In: Proceedings of the seventh ACM on conference on data and application security and privacy McLaughlin N, del Rincon JM, Kang B, Yerima S, Miller P, Sezer S, Safaei Y, Trickel E, Zhao Z, Doupé A, et al. (2017) Deep android malware detection. In: Proceedings of the seventh ACM on conference on data and application security and privacy
45.
go back to reference Milosevic N, Dehghantanha A, Choo KKR (2017) Machine learning aided android malware classification. Comput Electr Eng 61:266–274 Milosevic N, Dehghantanha A, Choo KKR (2017) Machine learning aided android malware classification. Comput Electr Eng 61:266–274
46.
go back to reference Narayanan A, Chandramohan M, Chen L, Liu Y (2018) A multi-view context-aware approach to android malware detection and malicious code localization. Empir Softw Eng 23(3):1222–1274 Narayanan A, Chandramohan M, Chen L, Liu Y (2018) A multi-view context-aware approach to android malware detection and malicious code localization. Empir Softw Eng 23(3):1222–1274
47.
go back to reference Narudin FA, Feizollah A, Anuar NB, Gani A (2016) Evaluation of machine learning classifiers for mobile malware detection. Soft Comput 20(1):343–357 Narudin FA, Feizollah A, Anuar NB, Gani A (2016) Evaluation of machine learning classifiers for mobile malware detection. Soft Comput 20(1):343–357
48.
go back to reference Ng DV, Hwang JIG (2014) Android malware detection using the dendritic cell algorithm. In: 2014 international conference on machine learning and cybernetics, IEEE, vol 1, pp 257–262 Ng DV, Hwang JIG (2014) Android malware detection using the dendritic cell algorithm. In: 2014 international conference on machine learning and cybernetics, IEEE, vol 1, pp 257–262
49.
go back to reference Novakovic J (2010) The impact of feature selection on the accuracy of naïve bayes classifier. In: 18th telecommunications forum TELFOR, vol 2, pp 1113–1116 Novakovic J (2010) The impact of feature selection on the accuracy of naïve bayes classifier. In: 18th telecommunications forum TELFOR, vol 2, pp 1113–1116
50.
go back to reference Plackett RL (1983) Karl Pearson and the chi-squared test. Int Stat Rev/Revue Internationale de Statistique 51:59–72MathSciNetMATH Plackett RL (1983) Karl Pearson and the chi-squared test. Int Stat Rev/Revue Internationale de Statistique 51:59–72MathSciNetMATH
51.
go back to reference Portokalidis G, Homburg P, Anagnostakis K, Bos H (2010) Paranoid android: versatile protection for smartphones. In: Proceedings of the 26th annual computer security applications conference, pp 347–356 Portokalidis G, Homburg P, Anagnostakis K, Bos H (2010) Paranoid android: versatile protection for smartphones. In: Proceedings of the 26th annual computer security applications conference, pp 347–356
52.
go back to reference Razmjooy N, Mousavi BS, Soleymani F (2013) A hybrid neural network imperialist competitive algorithm for skin color segmentation. Math Comput Modell 57(3–4):848–856 Razmjooy N, Mousavi BS, Soleymani F (2013) A hybrid neural network imperialist competitive algorithm for skin color segmentation. Math Comput Modell 57(3–4):848–856
53.
go back to reference Razmjooy N, Ramezani M, Ghadimi N (2017) Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal. Int J Fuzzy Syst 19(4):1144–1156 Razmjooy N, Ramezani M, Ghadimi N (2017) Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal. Int J Fuzzy Syst 19(4):1144–1156
54.
go back to reference Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network-world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16 Razmjooy N, Sheykhahmad FR, Ghadimi N (2018) A hybrid neural network-world cup optimization algorithm for melanoma detection. Open Med 13(1):9–16
55.
go back to reference Razmjooy N, Ashourian M, Karimifard M, Estrela VV, Loschi HJ, do Nascimento D, França RP, Vishnevski M, (2020) Computer-aided diagnosis of skin cancer: a review. Curr Med Imaging 16(7):781–93 Razmjooy N, Ashourian M, Karimifard M, Estrela VV, Loschi HJ, do Nascimento D, França RP, Vishnevski M, (2020) Computer-aided diagnosis of skin cancer: a review. Curr Med Imaging 16(7):781–93
56.
go back to reference Ren Z, Wu H, Ning Q, Hussain I, Chen B (2020) End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Netw 101:102098 Ren Z, Wu H, Ning Q, Hussain I, Chen B (2020) End-to-end malware detection for android IoT devices using deep learning. Ad Hoc Netw 101:102098
57.
go back to reference Samra AAA, Yim K, Ghanem OA (2013) Analysis of clustering technique in android malware detection. In: 2013 seventh international conference on innovative mobile and internet services in ubiquitous computing, IEEE, pp 729–733 Samra AAA, Yim K, Ghanem OA (2013) Analysis of clustering technique in android malware detection. In: 2013 seventh international conference on innovative mobile and internet services in ubiquitous computing, IEEE, pp 729–733
58.
go back to reference Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG, Álvarez G (2013) Puma: permission usage to detect malware in android. In: International joint conference CISIS’12-ICEUTE 12-SOCO 12 special sessions, Springer, pp 289–298 Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG, Álvarez G (2013) Puma: permission usage to detect malware in android. In: International joint conference CISIS’12-ICEUTE 12-SOCO 12 special sessions, Springer, pp 289–298
59.
go back to reference Saracino A, Sgandurra D, Dini G, Martinelli F (2016) Madam: effective and efficient behavior-based android malware detection and prevention. IEEE Trans Dependable Secur Comput 15(1):83–97 Saracino A, Sgandurra D, Dini G, Martinelli F (2016) Madam: effective and efficient behavior-based android malware detection and prevention. IEEE Trans Dependable Secur Comput 15(1):83–97
60.
go back to reference Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012) “andromaly”: a behavioral malware detection framework for android devices. J Intell Inf Syst 38(1):161–190 Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012) “andromaly”: a behavioral malware detection framework for android devices. J Intell Inf Syst 38(1):161–190
61.
go back to reference Sheen S, Anitha R, Natarajan V (2015) Android based malware detection using a multifeature collaborative decision fusion approach. Neurocomputing 151:905–912 Sheen S, Anitha R, Natarajan V (2015) Android based malware detection using a multifeature collaborative decision fusion approach. Neurocomputing 151:905–912
62.
go back to reference Shen F, Vecchio JD, Mohaisen A, Ko SY, Ziarek L (2018) Android malware detection using complex-flows. IEEE Trans Mobile Comput 18(6):1231–1245 Shen F, Vecchio JD, Mohaisen A, Ko SY, Ziarek L (2018) Android malware detection using complex-flows. IEEE Trans Mobile Comput 18(6):1231–1245
63.
go back to reference Shen T, Zhongyang Y, Xin Z, Mao B, Huang H (2014) Detect android malware variants using component based topology graph. In: 2014 IEEE 13th international conference on trust, security and privacy in computing and communications, IEEE, pp 406–413 Shen T, Zhongyang Y, Xin Z, Mao B, Huang H (2014) Detect android malware variants using component based topology graph. In: 2014 IEEE 13th international conference on trust, security and privacy in computing and communications, IEEE, pp 406–413
64.
go back to reference Tam K, Khan SJ, Fattori A, Cavallaro L (2015) Copperdroid: automatic reconstruction of android malware behaviors. In: Ndss Tam K, Khan SJ, Fattori A, Cavallaro L (2015) Copperdroid: automatic reconstruction of android malware behaviors. In: Ndss
65.
go back to reference Tang A, Sethumadhavan S, Stolfo SJ (2014) Unsupervised anomaly-based malware detection using hardware features. In: International workshop on recent advances in intrusion detection, Springer, pp 109–129 Tang A, Sethumadhavan S, Stolfo SJ (2014) Unsupervised anomaly-based malware detection using hardware features. In: International workshop on recent advances in intrusion detection, Springer, pp 109–129
66.
go back to reference Tong F, Yan Z (2017) A hybrid approach of mobile malware detection in android. J Parallel Distrib Comput 103:22–31 Tong F, Yan Z (2017) A hybrid approach of mobile malware detection in android. J Parallel Distrib Comput 103:22–31
67.
go back to reference Ultsch A (1990) Kohonen’s self organizing feature maps for exploratory data analysis. In: Proceedings of the INNC90, pp 305–308 Ultsch A (1990) Kohonen’s self organizing feature maps for exploratory data analysis. In: Proceedings of the INNC90, pp 305–308
68.
go back to reference Vemparala S, Troia FD, Corrado VA, Austin TH, Stamo M (2016) Malware detection using dynamic birthmarks. In: Proceedings of the 2016 ACM on international workshop on security and privacy analytics Vemparala S, Troia FD, Corrado VA, Austin TH, Stamo M (2016) Malware detection using dynamic birthmarks. In: Proceedings of the 2016 ACM on international workshop on security and privacy analytics
69.
go back to reference Wang W, Zhao M, Wang J (2019) Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. J Ambient Intell Humaniz Comput 10(8):3035–3043 Wang W, Zhao M, Wang J (2019) Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. J Ambient Intell Humaniz Comput 10(8):3035–3043
70.
go back to reference Xiao L, Wang K, Teng Y, Zhang J (2003) Component plane presentation integrated self-organizing map for microarray data analysis. FEBS Lett 538(1–3):117–124 Xiao L, Wang K, Teng Y, Zhang J (2003) Component plane presentation integrated self-organizing map for microarray data analysis. FEBS Lett 538(1–3):117–124
71.
go back to reference Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019) Android malware detection based on system call sequences and lstm. Multimed Tools Appl 78(4):3979–3999 Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019) Android malware detection based on system call sequences and lstm. Multimed Tools Appl 78(4):3979–3999
72.
go back to reference Xu R, Saïdi H, Anderson R (2012) Aurasium: practical policy enforcement for android applications. In: Presented as part of the 21st \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 12), pp 539–552 Xu R, Saïdi H, Anderson R (2012) Aurasium: practical policy enforcement for android applications. In: Presented as part of the 21st \(\{\)USENIX\(\}\) Security Symposium (\(\{\)USENIX\(\}\) Security 12), pp 539–552
73.
go back to reference Yerima SY, Sezer S (2018) Droidfusion: a novel multilevel classifier fusion approach for android malware detection. IEEE Trans Cybern 49(2):453–466 Yerima SY, Sezer S (2018) Droidfusion: a novel multilevel classifier fusion approach for android malware detection. IEEE Trans Cybern 49(2):453–466
74.
go back to reference Yerima SY, Sezer S, McWilliams G, Muttik I (2013) A new android malware detection approach using bayesian classification. In: 2013 IEEE 27th international conference on advanced information networking and applications (AINA), IEEE, pp 121–128 Yerima SY, Sezer S, McWilliams G, Muttik I (2013) A new android malware detection approach using bayesian classification. In: 2013 IEEE 27th international conference on advanced information networking and applications (AINA), IEEE, pp 121–128
75.
go back to reference Yerima SY, Sezer S, McWilliams G (2014) Analysis of bayesian classification-based approaches for android malware detection. IET Inf Secur 8(1):25–36 Yerima SY, Sezer S, McWilliams G (2014) Analysis of bayesian classification-based approaches for android malware detection. IET Inf Secur 8(1):25–36
76.
go back to reference Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of pem fuel cells using an improved elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374 Yu D, Wang Y, Liu H, Jermsittiparsert K, Razmjooy N (2019) System identification of pem fuel cells using an improved elman neural network and a new hybrid optimization algorithm. Energy Rep 5:1365–1374
77.
go back to reference Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci Technol 21(1):114–123 Yuan Z, Lu Y, Xue Y (2016) Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci Technol 21(1):114–123
78.
go back to reference Zhang K, Li C, Wang Y, Zhu X, Wang H (2017) Collaborative support vector machine for malware detection. Procedia Comput Sci 108:1682–1691 Zhang K, Li C, Wang Y, Zhu X, Wang H (2017) Collaborative support vector machine for malware detection. Procedia Comput Sci 108:1682–1691
79.
go back to reference Zhou W, Zhou Y, Jiang X, Ning P (2012) Detecting repackaged smartphone applications in third-party android marketplaces. In: Proceedings of the second ACM conference on data and application security and privacy, pp 317–326 Zhou W, Zhou Y, Jiang X, Ning P (2012) Detecting repackaged smartphone applications in third-party android marketplaces. In: Proceedings of the second ACM conference on data and application security and privacy, pp 317–326
80.
go back to reference Zhu HJ, Jiang TH, Ma B, You ZH, Shi WL, Cheng L (2018a) Hemd: a highly efficient random forest-based malware detection framework for android. Neural Comput Appl 30(11):3353–3361 Zhu HJ, Jiang TH, Ma B, You ZH, Shi WL, Cheng L (2018a) Hemd: a highly efficient random forest-based malware detection framework for android. Neural Comput Appl 30(11):3353–3361
81.
go back to reference Zhu HJ, You ZH, Zhu ZX, Shi WL, Chen X, Cheng L (2018b) Droiddet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272:638–646 Zhu HJ, You ZH, Zhu ZX, Shi WL, Chen X, Cheng L (2018b) Droiddet: effective and robust detection of android malware using static analysis along with rotation forest model. Neurocomputing 272:638–646
Metadata
Title
SOMDROID: android malware detection by artificial neural network trained using unsupervised learning
Authors
Arvind Mahindru
A. L. Sangal
Publication date
12-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Evolutionary Intelligence / Issue 1/2022
Print ISSN: 1864-5909
Electronic ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-020-00518-1

Other articles of this Issue 1/2022

Evolutionary Intelligence 1/2022 Go to the issue

Premium Partner