Skip to main content
Top

2016 | OriginalPaper | Chapter

Some Evolution Problems in the Vacuum Einstein Equations

Authors : Junbin Li, Xi-Ping Zhu

Published in: Geometry and Topology of Manifolds

Publisher: Springer Japan

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We discuss two problems in the evolution of the vacuum Einstein equations. The first one is about the formation of trapped surface, and the second one is about the characteristic problems with initial data on complete null cones.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
See the Appendix on the discussion on the characteristic initial data.
 
2
Strictly speaking, they proved the existence of a closed marginally trapped surface, which refers to a 2-dim embedding space-like surface with the mean curvature with respect to the outgoing future null normals to the surface being zero.
 
3
We recall the spacetime Kerr metric in the Boyer-Lindquist coordinates:
$$\begin{aligned} g_{K}&=(-1+\frac{2mr}{r^2+a^2\cos ^2\theta })\mathrm{{d}} t^2-\frac{2mra\sin ^2\theta }{r^2+a^2\cos ^2\theta }\mathrm{{d}} t\mathrm{{d}}\varphi +\frac{r^2+a^2\cos ^2\theta }{r^2-2mr+a^2}\mathrm{{d}} r^2\\&\quad +(r^2+a^2\cos ^2\theta )\mathrm{{d}}\theta ^2+\sin ^2\theta (r^2+a^2+\frac{2mra^2\sin ^2\theta }{r^2+a^2\cos ^2\theta })\mathrm{{d}}\varphi ^2. \end{aligned}$$
.
 
4
The Schwarzschild spacetime is the Kerr spacetime with \(a=0\).
 
5
The asymptotic flatness condition \(\displaystyle \inf _{x_0\in \varSigma }Q(x_0)<+\infty \) holds.
 
6
This is only a heuristic form of the asymptotic behavior. See the Appendix for detail discussion.
 
7
In the case that the asymptotic behavior imposed on \(C_0\) is the same as that in the work of Bieri [1], an analogue theorem was also proved in [19] by the authors after this paper was accepted.
 
8
Using the conformal vacuum Einstein equations, the length of \(C_0\) becomes finite. Their method actually applies to a more general class of nonlinear wave equations assuming \(C_0\) to be finite.
 
9
The work [8] of Christodoulou was actually the first example of combining both ingredients without symmetry.
 
10
The metric g does not exist at the first moment, but we should assume g exists and point out the geometric meaning of the initial data.
 
11
This means that s and \(\underline{s}\) are affine parameters of the null generators of \(C_0\) and \(\underline{C}_0\) respectively.
 
12
By this we mean we should assign on \(S_0\) a Riemannian metric \(g \!\! /\), a one-form and two functions on \(S_0\), which play the roles of \(\zeta \), \(\mathrm {tr}\chi \) and \(\mathrm {tr}\underline{\chi }\) in the resulting solution.
 
13
These equations can be found in Chap. 1 of [8].
 
14
However, \(\alpha \) can be computed directly as \(\alpha =-\widehat{\frac{\partial }{\partial s}}\widehat{\chi }_{AB}\) where \(\widehat{\frac{\partial }{\partial s}}\) is the trace-free part of the derivative.
 
15
The initial values of the equations below can be figured out by the values of \(\zeta \), \(\widehat{\chi }\), \(\mathrm {tr}\chi \), \(\widehat{\underline{\chi }}\) and \(\mathrm {tr}\underline{\chi }\) on \(S_0\), by another group of equations, that we will not present here.
 
16
One can see [4] for a related topic when the data is small.
 
17
There are some nonessential differences from the statement in [20] for simplicity and convenience.
 
18
\(\overline{f}\) is defined to be the average of f on \(S_s\).
 
19
\(\mathscr {L} \! /_{e_3}\) means the restriction on \(S_s\) of the Lie derivative in \(e_3\) direction.
 
20
The Eq. (10) has been studied in Chap. 2 of [8]. Notice that \(\widehat{\chi }\) is simply the derivative with respect to s of \(\widehat{g \!\! /}\), up to a multiple \(\phi ^2\).
 
Literature
1.
go back to reference Bieri, L.: An Extension of the Stability Theorem of the Minkowski Space in General Relativity. Ph.D. Thesis, Mathematics Department, ETH Zurich (2007) Bieri, L.: An Extension of the Stability Theorem of the Minkowski Space in General Relativity. Ph.D. Thesis, Mathematics Department, ETH Zurich (2007)
2.
go back to reference Cabet, A., Chruściel, P.T., Wafo, R.T.: On the characteristic initial value problem for nonlinear symmetric hyperbolic systems, including Einstein equations. arXiv:1406.3009 Cabet, A., Chruściel, P.T., Wafo, R.T.: On the characteristic initial value problem for nonlinear symmetric hyperbolic systems, including Einstein equations. arXiv:​1406.​3009
3.
go back to reference Caciotta, G., Nicolò, F.:On a class of global characteristic problems for the Einstein vacuum equations with small initial data. J. Math. Phys. 51(10), 102503, 21 (2010) Caciotta, G., Nicolò, F.:On a class of global characteristic problems for the Einstein vacuum equations with small initial data. J. Math. Phys. 51(10), 102503, 21 (2010)
4.
go back to reference Caciotta, G., Nicolò, F.: Global characteristic problem for Einstein vacuum equations with small initial data. I. The initial data constraints. JHDE 2(1), 201–277 (2005)MathSciNetMATH Caciotta, G., Nicolò, F.: Global characteristic problem for Einstein vacuum equations with small initial data. I. The initial data constraints. JHDE 2(1), 201–277 (2005)MathSciNetMATH
5.
go back to reference Choquet-Bruhat, Y.: Theoreme d’existence pour certain systemes d’equations aux deriveés partielles nonlinaires. Acta Mathematica 88, 141–225 (1952)MathSciNetCrossRef Choquet-Bruhat, Y.: Theoreme d’existence pour certain systemes d’equations aux deriveés partielles nonlinaires. Acta Mathematica 88, 141–225 (1952)MathSciNetCrossRef
6.
go back to reference Choquet-Bruhat, Y., Geroch, R.P.: Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys. 14, 329–335 (1969)MathSciNetCrossRefMATH Choquet-Bruhat, Y., Geroch, R.P.: Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys. 14, 329–335 (1969)MathSciNetCrossRefMATH
7.
go back to reference Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of Minkowski Space. Princeton Mathematical Series 41 (1993) Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of Minkowski Space. Princeton Mathematical Series 41 (1993)
8.
go back to reference Christodoulou, D.: The Formation of Black Holes in General Relativity. Monographs in Mathematics. European Mathematical Society (2009) Christodoulou, D.: The Formation of Black Holes in General Relativity. Monographs in Mathematics. European Mathematical Society (2009)
9.
go back to reference Christodoulou, D.: The global initial value problem in general relativity. In: 9th Marcel Grosmann Meeting (Rome, 2000), pp. 44–54. World Science Publishing (2002) Christodoulou, D.: The global initial value problem in general relativity. In: 9th Marcel Grosmann Meeting (Rome, 2000), pp. 44–54. World Science Publishing (2002)
10.
11.
go back to reference Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)MathSciNetCrossRefMATH Christodoulou, D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math. 149, 183–217 (1999)MathSciNetCrossRefMATH
12.
go back to reference Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214, 137–189 (2000)MathSciNetCrossRefMATH Corvino, J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214, 137–189 (2000)MathSciNetCrossRefMATH
13.
go back to reference Corvino, J., Schoen, R.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73, 185–217 (2006)MathSciNetMATH Corvino, J., Schoen, R.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73, 185–217 (2006)MathSciNetMATH
14.
go back to reference Hawking, S.W., Ellis, G.F.: The Large Scale Structure of Space-Time. Cambridge University Press (1973) Hawking, S.W., Ellis, G.F.: The Large Scale Structure of Space-Time. Cambridge University Press (1973)
15.
go back to reference Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity. Progress in Mathematical Physics 25. Birkhäuser, Boston (2003) Klainerman, S., Nicolò, F.: The Evolution Problem in General Relativity. Progress in Mathematical Physics 25. Birkhäuser, Boston (2003)
16.
go back to reference Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. math. 198(1), 1–26 (2014)MathSciNetCrossRefMATH Klainerman, S., Luk, J., Rodnianski, I.: A fully anisotropic mechanism for formation of trapped surfaces in vacuum. Invent. math. 198(1), 1–26 (2014)MathSciNetCrossRefMATH
18.
go back to reference Li, J., Yu, P.: Construction of Cauchy data of vacuum Einstein field equations evolving to black holes. Ann. Math. 181(2), 699–768 (2015) Li, J., Yu, P.: Construction of Cauchy data of vacuum Einstein field equations evolving to black holes. Ann. Math. 181(2), 699–768 (2015)
19.
go back to reference Li, J., Zhu, X.P.: Local existence in retarded time under a weak decay on complete null cones. Sci. China Math. 59(1), 85–106 (2016) Li, J., Zhu, X.P.: Local existence in retarded time under a weak decay on complete null cones. Sci. China Math. 59(1), 85–106 (2016)
22.
go back to reference Luk, J., Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations. arXiv:1301.1072 Luk, J., Rodnianski, I.: Nonlinear interaction of impulsive gravitational waves for the vacuum Einstein equations. arXiv:​1301.​1072
23.
go back to reference Luk, J.: On the local existence for characteristic initial value problem in general relativity. Int. Math. Res. Not. 20, 4625–4678 (2012) Luk, J.: On the local existence for characteristic initial value problem in general relativity. Int. Math. Res. Not. 20, 4625–4678 (2012)
25.
go back to reference Rendall, A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. Roy. Soc Lond. A 427, 221–239 (1990)MathSciNetCrossRefMATH Rendall, A.: Reduction of the characteristic initial value problem to the Cauchy problem and its applications to the Einstein equations. Proc. Roy. Soc Lond. A 427, 221–239 (1990)MathSciNetCrossRefMATH
26.
Metadata
Title
Some Evolution Problems in the Vacuum Einstein Equations
Authors
Junbin Li
Xi-Ping Zhu
Copyright Year
2016
Publisher
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-56021-0_11

Premium Partner