Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Some inequalities for \((p,q)\)-mixed volume

Authors: Bin Chen, Weidong Wang

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

Lutwak, Yang, and Zhang introduced the concept of \((p,q)\)-mixed volume whose special cases contain the \(L_{p}\)-mixed volume and the \(L_{p}\)-dual mixed volume. In this article, associated with the \((p,q)\)-mixed volumes, we establish related cyclic inequalities, monotonic inequalities, and product inequalities.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction and main results

At the end of the nineteenth century, Brunn and Minkowski pioneered the classical Brunn–Minkowski theory of convex bodies, which is the product of Minkowski linear combination of vectors and volumes in the Euclidean space. The core of this theory are mixed volume, mixed area measure, and the basic Brunn–Minkowski inequality. In recent years, Brunn–Minkowski theory attracted wide attention (see [1, 2]).
By the 1960s, Firey put forward the concept of \(L_{p}\)-Minkowski combination of convex bodies (see [2]). In 1993, Lutwak [3] introduced the \(L_{p}\)-Minkowski linear combination of convex bodies to the classical Brunn–Minkowski theory, proposed the notions of \(L_{p}\)-mixed volume, \(L_{p}\)-mixed quermassintegrals, and \(L_{p}\)-surface area measure, and obtained the corresponding integral expression, which extended the classical Brunn–Minkowski theory to \(L_{p}\) space (called the \(L_{p}\) Brunn–Minkowski theory). This new theory has attracted a large number of researchers’ interests in recent years (see [422]). Especially, the concept of \(L_{p}\)-mixed volume (\(p\geq1\)) plays an important role in \(L_{p}\) Brunn–Minkowski theory (see [3, 23]).
The classical dual Brunn–Minkowski theory of star bodies was introduced by Lutwak [24] in 1975. In 1996, on the basis of \(L_{p}\) harmonic radial combination, Lutwak [23] put forward the concept of \(L_{p}\)-dual mixed volume (\(p\geq1\)) and gave its integral expression. This means that the preliminary \(L_{p}\) dual Brunn–Minkowski theory has been established. Afterwards, Grinberg and Zhang defined the notion of \(L_{p}\) radial combination (\(p>0\)). In 2002, Gardner improved \(p>0\) to \(p\neq0\) in \(L_{p}\) radial combination, and got a more extensive class of \(L_{p}\)-dual mixed volume (\(p\neq0\)). For more information about the classical dual Brunn–Minkowski theory and \(L_{p}\) dual Brunn–Minkowski theory, please refer to [2535].
Very recently, Huang et al. [10] constructed the dual curvature measure in dual Brunn–Minkowski theory. These measures are dual to Federer’s curvature measures which are fundamental in the classical Brunn–Minkowski theory. In 2018, Lutwak, Yang, and Zhang [36] made further work and introduced \(L_{p}\) dual curvature measures which include \(L_{p}\) surface area measure, dual curvature measures, and \(L_{p}\) integral curvatures. Using this new concept, they introduced the \((p,q)\)-mixed volume, which unifies \(L_{p}\)-mixed volume and \(L_{p}\)-dual mixed volume. Thus, \(L_{p}\) Brunn–Minkowski theory and \(L_{p}\) dual Brunn–Minkowski theory are partially unified.
Let K be a convex body if K is a compact, convex subset in an n-dimensional Euclidean space \(\mathbb{R}^{n}\) with nonempty interior. The set of all convex bodies in \(\mathbb{R}^{n}\) is written as \(\mathcal {K}^{n}\). Let \(\mathcal{K}_{o}^{n}\) denote the set of convex bodies containing the origin in their interiors. Let \(\mathcal{S}_{o}^{n}\) denote the set of star bodies (about the origin) in \(\mathbb{R}^{n}\). We write u for the unit vector and B for the unit ball centered at the origin, the surface of B denoted by \(S^{n-1}\). We shall use \(V(K)\) for the n-dimensional volume of the body K in \(\mathbb{R}^{n}\).
Suppose that \(\mathbb{R}\) is the set of real numbers. If \(E\in\mathcal {K}^{n}\), the support function of E, \(h_{E}=h(E,\cdot)\): \(\mathbb {R}^{n}\rightarrow\mathbb{R}\), is defined by (see [1, 2])
$$h(E,x)=\max\{x\cdot y:y\in E\},\quad x\in\mathbb{R}^{n}, $$
where \(x\cdot y\) denotes the standard inner product of x and y in \(\mathbb{R}^{n}\).
For a compact star-shaped (about the origin) E in \(\mathbb{R}^{n}\), the radial function \(\rho_{E}\) of E, \(\rho_{E}=\rho(E,\cdot)\): \(\mathbb {R}^{n}\backslash\{0\}\rightarrow[0,+\infty)\), is defined by (see [1, 2])
$$\rho(E,x)=\max\{\lambda\geq0:\lambda x\in E\},\quad x\in\mathbb {R}^{n}\backslash\{0\}. $$
If \(\rho_{E}\) is positive and continuous, then E is called a star body.
If \(E\in\mathbb{R}^{n}\) is a nonempty subset, the polar set of E, \(E^{\ast}\), is defined by (see [1, 2])
$$E^{\ast}=\bigl\{ x\in\mathbb{R}^{n}:x\cdot y\leq1, y\in E\bigr\} . $$
From this, it is easy to get that \((E^{\ast})^{\ast}=E\) for all \(E\in \mathcal{K}_{o}^{n}\).
From the definition of polar, we know that if \(E\in\mathcal{K}_{o}^{n}\), the support and radial function of \(E^{\ast}\), the polar body of E, have the following relationships (see [1, 2]):
$$ h\bigl(E^{\ast},\cdot\bigr)=\frac{1}{\rho(E,\cdot)},\qquad \rho \bigl(E^{\ast},\cdot\bigr)=\frac{1}{h(E,\cdot)}. $$
(1.1)
Very recently, Lutwak et al. defined a new concept (i.e., \(L_{p}\) dual curvature measures) as follows (see [36]): For \(p,q\in\mathbb{R}\), \(K\in\mathcal{K}_{o}^{n}\), and \(L\in\mathcal{S}_{o}^{n}\), the \(L_{p}\) dual curvature measures \(\widetilde{C}_{p,q}(K,L,\cdot)\) on \(S^{n-1}\) is defined by
$$ \int_{S^{n-1}}g(v)\,d\widetilde{C}_{p,q}(K,L,v)= \frac{1}{n} \int _{S^{n-1}}g\bigl(\alpha_{K}(u)\bigr)h_{K}^{-p} \bigl(\alpha_{K}(u)\bigr)\rho_{K}^{q}(u)\rho _{L}^{n-q}(u)\,du $$
(1.2)
for each continuous \(g:S^{n-1}\rightarrow\mathbb{R}\). Here \(\alpha_{K}\) is the radial Gauss map (see [36]).
By (1.2), Lutwak, Yang, and Zhang [36] defined the \((p,q)\)-mixed volumes as follows: For \(K,L\in\mathcal{K}_{o}^{n}\), \(M\in\mathcal{S}_{o}^{n}\), and \(p,q\in\mathbb{R}\), the \((p,q)\)-mixed volume \(\widetilde {V}_{p,q}(K,L,M)\) of \(K,L,M\) is defined by
$$\widetilde{V}_{p,q}(K,L,M)= \int_{S^{n-1}}h_{L}^{p}(v)\,d\widetilde {C}_{p,q}(K,M,v). $$
For the \((p,q)\)-mixed volumes, the authors [36] gave the following integral formula:
$$ \widetilde{V}_{p,q}(K,L,M)=\frac{1}{n} \int_{S^{n-1}} \biggl(\frac {h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du. $$
(1.3)
By (1.3), Lutwak et al. introduced the \(L_{p}\) mixed volume for \(p\in \mathbb{R}\). For \(K,L\in\mathcal{K}_{o}^{n}\) and any real p, the \(L_{p}\) mixed volume \(V_{p}(K,L)\) is given by
$$V_{p}(K,L)=\frac{1}{n} \int_{S^{n-1}}h_{L}^{p}(u)\,dS_{p}(K,u). $$
Here \(S_{p}(K, \cdot)\) denotes the \(L_{p}\) surface area measure (see [3]). The case of \(p\geq1\) is Lutwak’s \(L_{p}\) mixed volume (see [3]).
At the same time, for \(K,L\in\mathcal{S}_{o}^{n}\) and \(q\in\mathbb{R}\), they also defined the qth dual mixed volume \(\widetilde{V}_{q}(K,L)\) by
$$\widetilde{V}_{q}(K,L)=\frac{1}{n} \int_{S^{n-1}}\rho_{K}^{q}(u)\rho _{L}^{n-q}(u)\,du. $$
In addition, they gave several special cases of \((p,q)\)-mixed volume: For \(p,q\in\mathbb{R}\), \(K,L\in\mathcal{K}_{o}^{n}\), and \(M\in\mathcal {S}_{o}^{n}\), then
$$\begin{aligned} &\widetilde{V}_{p,q}(K,K,K)=V(K)=\frac{1}{n} \int_{S^{n-1}}\rho _{K}^{n}(u)\,du, \end{aligned}$$
(1.4)
$$\begin{aligned} & \widetilde{V}_{p,q}(K,K,M)=\widetilde{V}_{q}(K,M), \end{aligned}$$
(1.5)
$$\begin{aligned} & \widetilde{V}_{p,q}(K,L,K)=V_{p}(K,L), \end{aligned}$$
(1.6)
$$\begin{aligned} & \widetilde{V}_{0,q}(K,L,M)=\widetilde{V}_{q}(K,M), \end{aligned}$$
(1.7)
$$\begin{aligned} & \widetilde{V}_{p,n}(K,L,M)=V_{p}(K,L). \end{aligned}$$
(1.8)
In this paper, we further study the \((p,q)\)-mixed volumes and establish some inequalities including cyclic inequalities, monotonic inequalities, and product inequalities. First, we give a class of cyclic inequalities as follows.
Theorem 1.1
Suppose \(p,q,r,s\in\mathbb{R}\) satisfy \(1\leq p< q< r\leq n\). If \(K,L\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal {S}_{o}^{n}\), then
$$\begin{aligned} \widetilde{V}_{q,s}(K,L,M)^{r-p}\leq\widetilde {V}_{p,s}(K,L,M)^{r-q}\widetilde{V}_{r,s}(K,L,M)^{q-p} \end{aligned}$$
(1.9)
with equality if and only if \(K,L\), and M are dilates.
Theorem 1.2
Suppose \(p,q,r,s\in\mathbb{R}\) satisfy \(1\leq p< q< r\leq n\). If \(K,L\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal {S}_{o}^{n}\), then
$$\begin{aligned} \widetilde{V}_{s,q}(K,L,M)^{r-p}\leq\widetilde {V}_{s,p}(K,L,M)^{r-q}\widetilde{V}_{s,r}(K,L,M)^{q-p} \end{aligned}$$
(1.10)
with equality if and only if \(K,L\), and M are dilates.
Then we obtain a type of monotonic inequalities as follows.
Theorem 1.3
Suppose \(p,q\in\mathbb{R}\) satisfy \(1\leq p< q< n\). If \(K,L\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal{S}_{o}^{n}\), then
$$\begin{aligned} \biggl[\frac{\widetilde{V}_{n-p,p}(K,L,M)}{V(K)} \biggr]^{\frac {1}{n-p}}\geq \biggl[ \frac{\widetilde{V}_{n-q,q}(K,L,M)}{V(K)} \biggr]^{\frac{1}{n-q}} \end{aligned}$$
(1.11)
with equality if and only if K and M are dilates.
Theorem 1.4
Suppose \(p,q\in\mathbb{R}\) satisfy \(1\leq p< q< n\). If \(K,L\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal{S}_{o}^{n}\), then
$$\begin{aligned} \biggl[\frac{\widetilde{V}_{p,p}(K,L,M)}{V(M)} \biggr]^{\frac{1}{p}}\leq \biggl[ \frac{\widetilde{V}_{q,q}(K,L,M)}{V(M)} \biggr]^{\frac{1}{q}} \end{aligned}$$
(1.12)
with equality if and only if K and M are dilates.
Finally, we set up a type of product inequalities as follows.
Theorem 1.5
Suppose \(p>0, q\in\mathbb{R}\). If \(K,L\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal{S}_{o}^{n}\), then
$$\begin{aligned} \widetilde{V}_{p,q}(K,L,M)\widetilde{V}_{p,q} \bigl(K,L^{\ast},M\bigr)\geq\widetilde {V}_{p,q}(K,B,M)^{2} \end{aligned}$$
(1.13)
with equality if and only if L is a ball centered at the origin.
Theorem 1.6
Suppose \(p,q\in\mathbb{R}\) and \(q>n\). If \(K,L,M\in\mathcal{K}_{o}^{n}\), then
$$\begin{aligned} \widetilde{V}_{p,q}(K,L,M)\widetilde{V}_{p,q} \bigl(K,L,M^{\ast}\bigr)\geq\widetilde {V}_{p,q}(K,L,B)^{2} \end{aligned}$$
(1.14)
with equality if and only if M is a ball centered at the origin.
The proofs of Theorems 1.11.6 will be completed in the next section.

2 Proofs of theorems

In this part, we give the proofs of Theorems 1.11.6.
Proof of Theorem 1.1
For \(p,q,r,s\in\mathbb{R}\), \(K,L\in \mathcal{K}_{o}^{n}\), and \(M\in\mathcal{S}_{o}^{n}\). Since \(1\leq p< q< r\leq n\), then \(\frac{r-p}{r-q}>1\). From (1.3) and Hölder’s integral inequality, we get that for \(u\in S^{n-1}\)
$$\begin{aligned} &\widetilde{V}_{p,s}(K,L,M)^{\frac{r-q}{r-p}}\widetilde {V}_{r,s}(K,L,M)^{\frac{q-p}{r-p}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{s}(u) \rho_{M}^{n-s}(u)\,du \biggr]^{\frac{r-q}{r-p}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{r}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{s}(u) \rho_{M}^{n-s}(u)\,du \biggr]^{\frac{q-p}{r-p}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl( \biggl(\frac{h_{L}}{h_{K}} \biggr)^{\frac {p(r-q)}{r-p}}\bigl(\alpha_{K}(u)\bigr)\rho_{K}^{\frac{s(r-q)}{r-p}}(u) \rho_{M}^{\frac{(n-s)(r-q)}{r-p}}(u) \biggr)^{\frac{r-p}{r-q}}\,du \biggr]^{\frac{r-q}{r-p}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl( \biggl(\frac{h_{L}}{h_{K}} \biggr)^{\frac{r(q-p)}{r-p}}\bigl(\alpha_{K}(u)\bigr)\rho_{K}^{\frac{s(q-p)}{r-p}}(u) \rho_{M}^{\frac{(n-s)(q-p)}{r-p}}(u) \biggr)^{\frac{r-p}{q-p}}\,du \biggr]^{\frac{q-p}{r-p}} \\ &\quad \geq\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{q}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{s}(u) \rho_{M}^{n-s}(u)\,du \\ &\quad =\widetilde{V}_{q,s}(K,L,M), \end{aligned}$$
i.e.,
$$\begin{aligned} \widetilde{V}_{q,s}(K,L,M)^{r-p}\leq\widetilde {V}_{p,s}(K,L,M)^{r-q}\widetilde{V}_{r,s}(K,L,M)^{q-p}. \end{aligned}$$
(2.1)
This yields (1.9). According to the equality condition of Hölder’s integral inequality, we see that equality holds in (2.1) if and only if \(K,L\), and M are dilates. □
In (2.1), if \(M=K\) or \(s=n\), by (1.6) or (1.8), we can get the following result (see [23]).
Corollary 2.1
Suppose that \(p,q,r\in\mathbb{R}\) satisfy \(1\leq p< q< r\leq n\). If \(K,L\in\mathcal{K}_{o}^{n}\), then
$$V_{q}(K,L)^{r-p}\leq V_{p}(K,L)^{r-q}V_{r}(K,L)^{q-p} $$
with equality if and only if K and L are dilates.
Proof of Theorem 1.2
For \(p,q,r,s\in\mathbb{R}\), \(K,L\in \mathcal{K}_{o}^{n}\), and \(M\in\mathcal{S}_{o}^{n}\). Since \(1\leq p< q< r\leq n\), then \(\frac{r-p}{r-q}>1\). From (1.3) and Hölder’s integral inequality, we get that for \(u\in S^{n-1}\)
$$\begin{aligned} &\widetilde{V}_{s,p}(K,L,M)^{\frac{r-q}{r-p}}\widetilde {V}_{s,r}(K,L,M)^{\frac{q-p}{r-p}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{s}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{p}(u) \rho_{M}^{n-p}(u)\,du \biggr]^{\frac{r-q}{r-p}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{s}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{r}(u) \rho_{M}^{n-r}(u)\,du \biggr]^{\frac{q-p}{r-p}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl( \biggl(\frac{h_{L}}{h_{K}} \biggr)^{\frac {s(r-q)}{r-p}}\bigl(\alpha_{K}(u)\bigr)\rho_{K}^{\frac{p(r-q)}{r-p}}(u) \rho_{M}^{\frac{(n-p)(r-q)}{r-p}}(u) \biggr)^{\frac{r-p}{r-q}}\,du \biggr]^{\frac{r-q}{r-p}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl( \biggl(\frac{h_{L}}{h_{K}} \biggr)^{\frac{s(q-p)}{r-p}}\bigl(\alpha_{K}(u)\bigr)\rho_{K}^{\frac{r(q-p)}{r-p}}(u) \rho_{M}^{\frac{(n-r)(q-p)}{r-p}}(u) \biggr)^{\frac{r-p}{q-p}}\,du \biggr]^{\frac{q-p}{r-p}} \\ &\quad \geq\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{s}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \\ &\quad =\widetilde{V}_{s,q}(K,L,M). \end{aligned}$$
Thus, we get
$$\begin{aligned} \widetilde{V}_{s,q}(K,L,M)^{r-p}\leq\widetilde {V}_{s,p}(K,L,M)^{r-q}\widetilde{V}_{s,r}(K,L,M)^{q-p}. \end{aligned}$$
(2.2)
This yields (1.10). According to the equality condition of Hölder’s integral inequality, we see that equality holds in (2.2) if and only if \(K,L\), and M are dilates. □
Combined with (1.5) and (1.7), taking \(L=K\) or \(s=0\) in (2.2), we obtain the following corollary.
Corollary 2.2
Suppose \(p,q,r\in\mathbb{R}\) satisfy \(1\leq p< q< r\leq n\). If \(K\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal{S}_{o}^{n}\), then
$$\widetilde{V}_{q}(K,M)^{r-p}\leq\widetilde{V}_{p}(K,M)^{r-q} \widetilde {V}_{r}(K,M)^{q-p} $$
with equality if and only if K and M are dilates.
Proof of Theorem 1.3
For \(p,q\in\mathbb{R}\), \(K,L\in \mathcal{K}_{o}^{n}\), and \(M\in\mathcal{S}_{o}^{n}\). Since \(1\leq p< q\), then \(\frac{n-q}{n-p}<1\). From (1.3), (1.4), and Hölder’s integral inequality, we obtain that for \(u\in S^{n-1}\)
$$\begin{aligned} &\widetilde{V}_{n-q,q}(K,L,M)^{\frac{n-p}{n-q}}V(K)^{\frac{p-q}{n-q}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{n-q} \bigl(\alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr]^{\frac{n-p}{n-q}} \cdot \biggl[ \frac{1}{n} \int_{S^{n-1}}\rho_{K}^{n}(u)\,du \biggr]^{\frac {p-q}{n-q}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl( \biggl(\frac{h_{L}}{h_{K}} \biggr)^{n-p}\bigl(\alpha_{K}(u)\bigr)\rho_{K}^{\frac{q(n-p)}{n-q}}(u) \rho_{M}^{n-p}(u) \biggr)^{\frac{n-q}{n-p}}\,du \biggr]^{\frac{n-p}{n-q}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \bigl(\rho_{K}^{\frac {n(p-q)}{n-q}}(u) \bigr)^{\frac{n-q}{p-q}}\,du \biggr]^{\frac{p-q}{n-q}} \\ &\quad \leq\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{n-p} \bigl(\alpha _{K}(u)\bigr)\rho_{K}^{p}(u) \rho_{M}^{n-p}(u)\,du \\ &\quad =\widetilde{V}_{n-p,p}(K,L,M), \end{aligned}$$
i.e.,
$$\begin{aligned} \biggl[\frac{\widetilde{V}_{n-p,p}(K,L,M)}{V(K)} \biggr]^{\frac {1}{n-p}}\geq \biggl[ \frac{\widetilde{V}_{n-q,q}(K,L,M)}{V(K)} \biggr]^{\frac{1}{n-q}}. \end{aligned}$$
(2.3)
This gives (1.11). According to the equality condition of Hölder’s integral inequality, we know that equality holds in (2.3) if and only if K and M are dilates. □
Proof of Theorem 1.4
For \(p,q\in\mathbb{R}\), \(K,L\in \mathcal{K}_{o}^{n}\), and \(M\in\mathcal{S}_{o}^{n}\). Since \(1\leq p< q\), then \(\frac{q}{p}>1\). From (1.3), (1.4), and Hölder’s integral inequality, we obtain that for \(u\in S^{n-1}\)
$$\begin{aligned} &\widetilde{V}_{q,q}(K,L,M)^{\frac{p}{q}}V(M)^{\frac{q-p}{q}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{q} \bigl(\alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr]^{\frac{p}{q}} \cdot \biggl[ \frac{1}{n} \int_{S^{n-1}}\rho_{M}^{n}(u)\,du \biggr]^{\frac {q-p}{q}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl( \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl(\alpha_{K}(u)\bigr)\rho_{K}^{p}(u) \rho_{M}^{\frac{p(n-q)}{q}}(u) \biggr)^{\frac {q}{p}}\,du \biggr]^{\frac{p}{q}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \bigl(\rho_{M}^{\frac {n(q-p)}{q}}(u) \bigr)^{\frac{q}{q-p}}\,du \biggr]^{\frac{q-p}{q}} \\ &\quad \geq\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{p}(u) \rho_{M}^{n-p}(u)\,du \\ &\quad =\widetilde{V}_{p,p}(K,L,M), \end{aligned}$$
i.e.,
$$\begin{aligned} \biggl[\frac{\widetilde{V}_{p,p}(K,L,M)}{V(M)} \biggr]^{\frac{1}{p}}\leq \biggl[ \frac{\widetilde{V}_{q,q}(K,L,M)}{V(M)} \biggr]^{\frac{1}{q}}. \end{aligned}$$
(2.4)
This gives (1.12). According to the equality condition of Hölder’s integral inequality, we know that equality holds in (2.4) if and only if K and M are dilates. □
We can get the following corollary by (1.5) and (1.7) in (2.4).
Corollary 2.3
Suppose \(p,q\in\mathbb{R}\) satisfy \(1\leq p< q\). If \(K\in\mathcal{K}_{o}^{n}\) and \(M\in\mathcal{S}_{o}^{n}\), then
$$\biggl[\frac{\widetilde{V}_{p}(K,M)}{V(M)} \biggr]^{\frac{1}{p}}\leq \biggl[\frac{\widetilde{V}_{q}(K,M)}{V(M)} \biggr]^{\frac{1}{q}} $$
with equality if and only if K and M are dilates.
Proof of Theorem 1.5
For \(p>0, q\in\mathbb{R}\), \(K,L\in \mathcal{K}_{o}^{n}\), and \(M\in\mathcal{S}_{o}^{n}\). From the definitions of support function and radial function, we know
$$\begin{aligned} \rho_{L^{\ast}}(u)\leq h_{L^{\ast}}(u) \end{aligned}$$
(2.5)
with equality if and only if L is a ball centered at the origin.
From (1.3), (1.1), (2.5), and Cauchy’s integral inequality, and noticing that \(h(B,\cdot)=1\), we have
$$\begin{aligned} &\widetilde{V}_{p,q}(K,L,M)^{\frac{1}{2}}\widetilde{V}_{p,q} \bigl(K,L^{\ast},M\bigr)^{\frac{1}{2}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr]^{\frac{1}{2}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L^{\ast}}}{h_{K}} \biggr)^{p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr]^{\frac{1}{2}} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}}\rho_{L^{\ast}}^{-p}\bigl(\alpha _{K}(u)\bigr)h_{K}^{-p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr]^{\frac {1}{2}} \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}}h_{L^{\ast}}^{p}\bigl(\alpha _{K}(u)\bigr)h_{K}^{-p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr]^{\frac {1}{2}} \\ &\quad \geq\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L^{\ast}}}{\rho_{L^{\ast}}} \biggr)^{\frac{p}{2}} \bigl(\alpha_{K}(u)\bigr)h_{K}^{-p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u)\rho _{M}^{n-q}(u)\,du \\ &\quad \geq\frac{1}{n} \int_{S^{n-1}}h_{K}^{-p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u)\rho _{M}^{n-q}(u)\,du \\ &\quad =\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{B}}{h_{K}} \biggr)^{p}\bigl( \alpha_{K}(u)\bigr)\rho _{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \\ &\quad =\widetilde{V}_{p,q}(K,B,M), \end{aligned}$$
i.e.,
$$\begin{aligned} \widetilde{V}_{p,q}(K,L,M)\widetilde{V}_{p,q} \bigl(K,L^{\ast},M\bigr)\geq\widetilde {V}_{p,q}(K,B,M)^{2}. \end{aligned}$$
(2.6)
Obviously, equality holds in (2.6) if and only if L is a ball centered at the origin. □
If we take \(M=K\) or \(q=n\) in (2.6) and associate with (1.6) and (1.8), the following corollary can be obtained (see [37]).
Corollary 2.4
Suppose \(p>0\). If \(K, L\in\mathcal{K}_{o}^{n}\), then
$$V_{p}(K,L)V_{p}\bigl(K,L^{\ast}\bigr)\geq V_{p}(K,B)^{2} $$
with equality if and only if L is a ball centered at the origin.
Proof of Theorem 1.6
For \(p,q\in\mathbb{R}\) and \(q>n\), \(K,L,M\in\mathcal{K}_{o}^{n}\). From the definitions of support function and radial function, we know
$$\begin{aligned} \rho_{M}(u)\leq h_{M}(u) \end{aligned}$$
(2.7)
with equality if and only if M is a ball centered at the origin.
From (1.3), (1.1), (2.7), and Cauchy’s integral inequality, and together with \(\rho(B,\cdot)=1\), we obtain
$$\begin{aligned} &\widetilde{V}_{p,q}(K,L,M)\widetilde{V}_{p,q} \bigl(K,L,M^{\ast}\bigr) \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr] \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M^{\ast}}^{n-q}(u)\,du \biggr] \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{M}^{n-q}(u)\,du \biggr] \\ &\qquad {}\cdot \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u)h_{M}^{q-n}(u)\,du \biggr] \\ &\quad \geq \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \biggl( \frac{h_{M}}{\rho_{M}} \biggr)^{\frac {q-n}{2}}(u)\,du \biggr]^{2} \\ &\quad \geq \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha_{K}(u)\bigr)\rho_{K}^{q}(u)\,du \biggr]^{2} \\ &\quad = \biggl[\frac{1}{n} \int_{S^{n-1}} \biggl(\frac{h_{L}}{h_{K}} \biggr)^{p}\bigl( \alpha _{K}(u)\bigr)\rho_{K}^{q}(u) \rho_{B}^{n-q}(u)\,du \biggr]^{2} \\ &\quad =\widetilde{V}_{p,q}(K,L,B)^{2}, \end{aligned}$$
This gives (1.14). Obviously, according to the equality of (2.7), we know that equality holds in (1.14) if and only if M is a ball centered at the origin. □
By (1.5) and (1.7), taking \(L=K\) or \(p=0\) in Theorem 1.6, we also obtain the following corollary.
Corollary 2.5
Suppose \(q\in\mathbb{R}\) and \(q>n\). If \(K,M\in\mathcal{K}_{o}^{n}\), then
$$\widetilde{V}_{q}(K,M)\widetilde{V}_{q} \bigl(K,M^{\ast}\bigr)\geq\widetilde {V}_{q}(K,B)^{2} $$
with equality if and only if M is a ball centered at the origin.

Acknowledgements

The authors want to express earnest thankfulness for the referees who provided extremely precious and helpful comments and suggestions. This made the article more accurate and readable.

Competing interests

The authors state that they have no competitive interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Gardner, R.J.: Geometric Tomography, 2nd edn. Encyclopedia Math. Appl. Cambridge University Press, Cambridge (2006) CrossRef Gardner, R.J.: Geometric Tomography, 2nd edn. Encyclopedia Math. Appl. Cambridge University Press, Cambridge (2006) CrossRef
2.
go back to reference Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Encyclopedia Math. Appl. Cambridge University Press, Cambridge (2014) MATH Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Encyclopedia Math. Appl. Cambridge University Press, Cambridge (2014) MATH
3.
go back to reference Lutwak, E.: The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993) MathSciNetCrossRef Lutwak, E.: The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38, 131–150 (1993) MathSciNetCrossRef
4.
go back to reference Böröczky, K., Lutwak, E., Yang, D., Zhang, G.Y.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012) MathSciNetCrossRef Böröczky, K., Lutwak, E., Yang, D., Zhang, G.Y.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012) MathSciNetCrossRef
5.
go back to reference Böröczky, K., Lutwak, E., Yang, D., Zhang, G.Y.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26, 831–852 (2013) MathSciNetCrossRef Böröczky, K., Lutwak, E., Yang, D., Zhang, G.Y.: The logarithmic Minkowski problem. J. Am. Math. Soc. 26, 831–852 (2013) MathSciNetCrossRef
7.
go back to reference Chou, K., Wang, X.: The \(L_{p}\) Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–82 (2006) MathSciNetCrossRef Chou, K., Wang, X.: The \(L_{p}\) Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math. 205, 33–82 (2006) MathSciNetCrossRef
8.
go back to reference Fleury, B., Guédon, O., Paouris, G.: A stability result for mean width of \(L_{p}\) centroid bodies. Adv. Math. 214, 865–877 (2007) MathSciNetCrossRef Fleury, B., Guédon, O., Paouris, G.: A stability result for mean width of \(L_{p}\) centroid bodies. Adv. Math. 214, 865–877 (2007) MathSciNetCrossRef
9.
10.
go back to reference Huang, Y., Lutwak, E., Yang, D., Zhang, G.Y.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016) MathSciNetCrossRef Huang, Y., Lutwak, E., Yang, D., Zhang, G.Y.: Geometric measures in the dual Brunn–Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016) MathSciNetCrossRef
11.
go back to reference Lutwak, E., Yang, D., Zhang, G.Y.: \(L_{p}\) affine isoperimetric inequalities. J. Differ. Geom. 56, 1–13 (2000) CrossRef Lutwak, E., Yang, D., Zhang, G.Y.: \(L_{p}\) affine isoperimetric inequalities. J. Differ. Geom. 56, 1–13 (2000) CrossRef
12.
go back to reference Lutwak, E., Yang, D., Zhang, G.Y.: On the \(L_{p}\) Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004) CrossRef Lutwak, E., Yang, D., Zhang, G.Y.: On the \(L_{p}\) Minkowski problem. Trans. Am. Math. Soc. 356, 4359–4370 (2004) CrossRef
13.
go back to reference Lutwak, E., Yang, D., Zhang, G.Y.: \(L_{p}\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005) CrossRef Lutwak, E., Yang, D., Zhang, G.Y.: \(L_{p}\) John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005) CrossRef
16.
go back to reference Stancu, A.: On the number of solutions to the discrete two-dimensional \(L_{0}\) Minkowski problem. Adv. Math. 180, 290–323 (2003) MathSciNetCrossRef Stancu, A.: On the number of solutions to the discrete two-dimensional \(L_{0}\) Minkowski problem. Adv. Math. 180, 290–323 (2003) MathSciNetCrossRef
19.
go back to reference Werner, E.: Rényi divergence and \(L_{p}\)-affine surface area for convex bodies. Adv. Math. 230, 1040–1059 (2012) MathSciNetCrossRef Werner, E.: Rényi divergence and \(L_{p}\)-affine surface area for convex bodies. Adv. Math. 230, 1040–1059 (2012) MathSciNetCrossRef
20.
go back to reference Wang, W.D., Leng, G.S.: \(L_{p}\)-Mixed affine surface area. J. Math. Anal. Appl. 1, 341–354 (2007) CrossRef Wang, W.D., Leng, G.S.: \(L_{p}\)-Mixed affine surface area. J. Math. Anal. Appl. 1, 341–354 (2007) CrossRef
21.
go back to reference Wang, W.D., Leng, G.S.: Some affine isoperimetric inequalities associated with \(L_{p}\)-affine surface area. Houst. J. Math. 34, 443–454 (2008) MATH Wang, W.D., Leng, G.S.: Some affine isoperimetric inequalities associated with \(L_{p}\)-affine surface area. Houst. J. Math. 34, 443–454 (2008) MATH
22.
go back to reference Zhu, B.C., Zhou, J.Z., Xu, W.X.: \(L_{0}\) mixed geominimal surface area. J. Math. Anal. Appl. 422, 1247–1263 (2015) MathSciNetCrossRef Zhu, B.C., Zhou, J.Z., Xu, W.X.: \(L_{0}\) mixed geominimal surface area. J. Math. Anal. Appl. 422, 1247–1263 (2015) MathSciNetCrossRef
23.
go back to reference Lutwak, E.: The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996) MathSciNetCrossRef Lutwak, E.: The Brunn–Minkowski–Firey theory II: affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996) MathSciNetCrossRef
26.
go back to reference Dulio, P., Gardner, R.J., Peri, C.: Characterizing the dual mixed volume via additive functionals. Indiana Univ. Math. J. 65, 69–91 (2016) MathSciNetCrossRef Dulio, P., Gardner, R.J., Peri, C.: Characterizing the dual mixed volume via additive functionals. Indiana Univ. Math. J. 65, 69–91 (2016) MathSciNetCrossRef
27.
go back to reference Feng, Y.B., Wang, W.D.: \(L_{p}\) dual mixed geominimal surface area. Glasg. Math. J. 56, 224–239 (2014) CrossRef Feng, Y.B., Wang, W.D.: \(L_{p}\) dual mixed geominimal surface area. Glasg. Math. J. 56, 224–239 (2014) CrossRef
28.
go back to reference Gardner, R.J.: The dual Brunn–Minkowski theory for bounded Borel set: dual affine quermassintegrals and inequalities. Adv. Math. 216, 358–386 (2007) MathSciNetCrossRef Gardner, R.J.: The dual Brunn–Minkowski theory for bounded Borel set: dual affine quermassintegrals and inequalities. Adv. Math. 216, 358–386 (2007) MathSciNetCrossRef
29.
go back to reference Jiménez, C.H., Villanueva, I.: Characterization of dual mixed volumes via polymeasures. J. Math. Anal. Appl. 426, 688–699 (2015) MathSciNetCrossRef Jiménez, C.H., Villanueva, I.: Characterization of dual mixed volumes via polymeasures. J. Math. Anal. Appl. 426, 688–699 (2015) MathSciNetCrossRef
30.
go back to reference Milman, E.: Dual mixed volumes and the slicing problem. Adv. Math. 207, 565–598 (2005) MathSciNet Milman, E.: Dual mixed volumes and the slicing problem. Adv. Math. 207, 565–598 (2005) MathSciNet
32.
go back to reference Wan, X.Y., Wang, W.D.: \(L_{p}\)-dual mixed affine surface area. Ukr. Math. J. 68, 601–609 (2016) CrossRef Wan, X.Y., Wang, W.D.: \(L_{p}\)-dual mixed affine surface area. Ukr. Math. J. 68, 601–609 (2016) CrossRef
33.
go back to reference Wang, J.Y., Wang, W.D.: \(L_{p}\)-dual affine surface area forms of Busemann–Petty type problems. Proc. Indian Acad. Sci. 125, 71–77 (2015) MathSciNetMATH Wang, J.Y., Wang, W.D.: \(L_{p}\)-dual affine surface area forms of Busemann–Petty type problems. Proc. Indian Acad. Sci. 125, 71–77 (2015) MathSciNetMATH
34.
go back to reference Wang, W.D., Leng, G.S.: \(L_{p}\)-dual mixed quermassintegrals. Indian J. Pure Appl. Math. 36, 177–188 (2005) MathSciNetMATH Wang, W.D., Leng, G.S.: \(L_{p}\)-dual mixed quermassintegrals. Indian J. Pure Appl. Math. 36, 177–188 (2005) MathSciNetMATH
35.
go back to reference Zhang, T., Wang, W.D., Si, L.: The mixed \(L_{p}\)-dual affine surface area for multiple star bodies. J. Nonlinear Sci. Appl. 9, 2813–2822 (2016) MathSciNetCrossRef Zhang, T., Wang, W.D., Si, L.: The mixed \(L_{p}\)-dual affine surface area for multiple star bodies. J. Nonlinear Sci. Appl. 9, 2813–2822 (2016) MathSciNetCrossRef
37.
go back to reference Wei, B., Wang, W.D.: Some inequalities for the \(L_{p}\)-mixed quermassintegrals. Wuhan Univ. J. Nat. Sci. 18, 233–236 (2013) MathSciNetCrossRef Wei, B., Wang, W.D.: Some inequalities for the \(L_{p}\)-mixed quermassintegrals. Wuhan Univ. J. Nat. Sci. 18, 233–236 (2013) MathSciNetCrossRef
Metadata
Title
Some inequalities for -mixed volume
Authors
Bin Chen
Weidong Wang
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1836-2

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner