Skip to main content
Top

2022 | OriginalPaper | Chapter

Spark Ignition Characteristics of Hydrogen Under Ar-O2 Atmosphere

Authors : Xinghu Liang, Xin Huang, Jun Deng, Shaoye Jin, Liguang Li

Published in: Proceedings of China SAE Congress 2020: Selected Papers

Publisher: Springer Nature Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The hydrogen-fueled argon power cycle engine has the potential for high efficiency and zero emissions. Based on constant volume combustion bomb and capacitive spark ignition system, this paper compares hydrogen spark ignition characteristics under different atmospheres, including breakdown voltage and spark ignition energy. It is expected to provide a theoretical basis for designing spark ignition system in terms of reliable spark ignition and eliminating the backfire or pre-ignition caused by the residual energy in the spark ignition system. Research results indicate that the breakdown voltage and spark ignition energy are highest under the CO2-O2 atmosphere, intermediate under the air atmosphere, and lowest under the Ar-O2 atmosphere. When the initial pressure is 0.1 MPa, the breakdown voltage and spark ignition energy under the 79%Ar-21%O2 atmosphere are respectively 2533 V and 64 μJ, respectively 24% and 38% lower than those under the air atmosphere. When initial pressure is 0.3 MPa, with the argon proportion increased from 79 to 88%, the breakdown voltage and spark ignition energy increase respectively by 23% and 49% to 5360 V and 282 μJ. Further researches find that the breakdown voltage and spark ignition energy generally increase with the increasing excess oxygen ratio and the decreasing hydrogen proportion. As the gas density increases with the increasing initial pressure, the breakdown voltage and spark ignition energy increase significantly.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li L, Gong Y, Deng J et al (2018) CO2 reduction request and future high-efficiency zero-emission argon power cycle engine. Automot Innov 1(1):43–53CrossRef Li L, Gong Y, Deng J et al (2018) CO2 reduction request and future high-efficiency zero-emission argon power cycle engine. Automot Innov 1(1):43–53CrossRef
2.
go back to reference Lauman EA, Reynolds RK (1978) Hydrogen-Fueled Engine: US4112875. 1978-09-12 Lauman EA, Reynolds RK (1978) Hydrogen-Fueled Engine: US4112875. 1978-09-12
3.
go back to reference Dibble R (2013) The iron “fuel cell” argon engine project. [S.l. : s.n.] Dibble R (2013) The iron “fuel cell” argon engine project. [S.l. : s.n.]
4.
go back to reference Bosch R (2016) Automotive engineering manual. WEI C, Translate. 4th edn. Beijing Institute of Technology Press, Beijing, pp 559–573 (in Chinese) Bosch R (2016) Automotive engineering manual. WEI C, Translate. 4th edn. Beijing Institute of Technology Press, Beijing, pp 559–573 (in Chinese)
5.
go back to reference Wang Z (2017) Failure analysis and research of ignition system for turbocharged gasoline engine. South China University of Technology, Guangzhou (in Chinese) Wang Z (2017) Failure analysis and research of ignition system for turbocharged gasoline engine. South China University of Technology, Guangzhou (in Chinese)
6.
go back to reference Kondo T, Lio S, Hiruma M et al (1997) A study on the mechanism of backfire in external mixture formation hydrogen engines about backfire occurred by cause of the spark plug. SAE Trans 106:1953–1960 Kondo T, Lio S, Hiruma M et al (1997) A study on the mechanism of backfire in external mixture formation hydrogen engines about backfire occurred by cause of the spark plug. SAE Trans 106:1953–1960
7.
go back to reference Verhelst S, Wallner T (2009) Hydrogen-fueled internal combustion engines. Prog Energy Combust Sci 35(6):490–527CrossRef Verhelst S, Wallner T (2009) Hydrogen-fueled internal combustion engines. Prog Energy Combust Sci 35(6):490–527CrossRef
8.
go back to reference Bane SPM, Ziegler JL, Shepherd JE (2015) Investigation of the effect of electrode geometry on spark ignition. Combust Flame 162(2):462–469CrossRef Bane SPM, Ziegler JL, Shepherd JE (2015) Investigation of the effect of electrode geometry on spark ignition. Combust Flame 162(2):462–469CrossRef
9.
go back to reference Ono R, Nifuku M, Fujiwara S et al (2005) Gas temperature of capacitance spark discharge in air. J Appl Phys 97(12):23307 Ono R, Nifuku M, Fujiwara S et al (2005) Gas temperature of capacitance spark discharge in air. J Appl Phys 97(12):23307
10.
go back to reference Ono R, Nifuku M, Fujiwara S et al (2007) Minimum ignition energy of hydrogen-air mixture: effects of humidity and spark duration. J Electrostat 65(2):87–93CrossRef Ono R, Nifuku M, Fujiwara S et al (2007) Minimum ignition energy of hydrogen-air mixture: effects of humidity and spark duration. J Electrostat 65(2):87–93CrossRef
11.
go back to reference Bane SPM, Shepherd JE, Kwon E et al (2011) Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures. Int J Hydrogen Energy 36(3):2344–2350CrossRef Bane SPM, Shepherd JE, Kwon E et al (2011) Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures. Int J Hydrogen Energy 36(3):2344–2350CrossRef
12.
go back to reference Coronel S, Mével R, Bane SPM et al (2013) Experimental study of minimum ignition energy of lean H2–N2O mixtures. Proc Combust Inst 34(1):895–902CrossRef Coronel S, Mével R, Bane SPM et al (2013) Experimental study of minimum ignition energy of lean H2–N2O mixtures. Proc Combust Inst 34(1):895–902CrossRef
13.
go back to reference Bane SPM (2010) Spark ignition: experimental and numerical investigation with application to aviation safety. California Institute of Technology, Pasadena Bane SPM (2010) Spark ignition: experimental and numerical investigation with application to aviation safety. California Institute of Technology, Pasadena
14.
go back to reference Bane SPM, Ziegler JL, Boettcher PA et al (2013) Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen. J Loss Prev Process Ind 26(2):290–294CrossRef Bane SPM, Ziegler JL, Boettcher PA et al (2013) Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen. J Loss Prev Process Ind 26(2):290–294CrossRef
15.
go back to reference American Society for Testing and Materials (2009) Standard test method for minimum ignition energy and quenching distance in gaseous mixtures. ASTM, West Conshohocken American Society for Testing and Materials (2009) Standard test method for minimum ignition energy and quenching distance in gaseous mixtures. ASTM, West Conshohocken
16.
go back to reference Aznar M, Pineda D, Cage B et al (2017) Working fluid replacement in gaseous direct-injection internal combustion engines: a fundamental and applied experimental investigation. 10th U.S. National combustion meeting, [S.l. : s.n.] Aznar M, Pineda D, Cage B et al (2017) Working fluid replacement in gaseous direct-injection internal combustion engines: a fundamental and applied experimental investigation. 10th U.S. National combustion meeting, [S.l. : s.n.]
17.
go back to reference Yan Z, Zhu D (2007) High voltage insulation technology, 2nd edn. China Electric Power Press, Beijing, pp 95–97 (in Chinese) Yan Z, Zhu D (2007) High voltage insulation technology, 2nd edn. China Electric Power Press, Beijing, pp 95–97 (in Chinese)
18.
go back to reference Kuffel E, Zaengl WS, Kuffel J (2000) High voltage engineering fundamentals, 2nd edn. Newnes, Oxford, pp 333–339 Kuffel E, Zaengl WS, Kuffel J (2000) High voltage engineering fundamentals, 2nd edn. Newnes, Oxford, pp 333–339
19.
go back to reference Gong Y, Deng J, Dou H et al (2015) The simulation study on the thermal efficiency of Argon Cycle Engine based on GT Power. 10th ASPACC, [S.l. : s.n.] Gong Y, Deng J, Dou H et al (2015) The simulation study on the thermal efficiency of Argon Cycle Engine based on GT Power. 10th ASPACC, [S.l. : s.n.]
20.
go back to reference Deng J, Gong X, Zhan Y et al (2017) Experiment on combustion characteristics of natural gas in cylinder under Ar-O2 atmosphere. Trans CSICE 37(1):38–43 (in Chinese) Deng J, Gong X, Zhan Y et al (2017) Experiment on combustion characteristics of natural gas in cylinder under Ar-O2 atmosphere. Trans CSICE 37(1):38–43 (in Chinese)
Metadata
Title
Spark Ignition Characteristics of Hydrogen Under Ar-O2 Atmosphere
Authors
Xinghu Liang
Xin Huang
Jun Deng
Shaoye Jin
Liguang Li
Copyright Year
2022
Publisher
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-16-2090-4_63

Premium Partner