Skip to main content
Top
Published in: Pattern Analysis and Applications 3/2007

01-08-2007 | Theoretical Advances

Sparse least squares support vector training in the reduced empirical feature space

Author: Shigeo Abe

Published in: Pattern Analysis and Applications | Issue 3/2007

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we discuss sparse least squares support vector machines (sparse LS SVMs) trained in the empirical feature space, which is spanned by the mapped training data. First, we show that the kernel associated with the empirical feature space gives the same value with that of the kernel associated with the feature space if one of the arguments of the kernels is mapped into the empirical feature space by the mapping function associated with the feature space. Using this fact, we show that training and testing of kernel-based methods can be done in the empirical feature space and that training of LS SVMs in the empirical feature space results in solving a set of linear equations. We then derive the sparse LS SVMs restricting the linearly independent training data in the empirical feature space by the Cholesky factorization. Support vectors correspond to the selected training data and they do not change even if the value of the margin parameter is changed. Thus for linear kernels, the number of support vectors is the number of input variables at most. By computer experiments we show that we can reduce the number of support vectors without deteriorating the generalization ability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
The method proposed in this paper is considered to be a generalized version of [8].
 
3
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.
 
Literature
1.
go back to reference Burges CJC (1996) Simplified support vector decision rules. In: Saitta L (ed) Machine Learning, Proceedings of the 13th international conference (ICML ’96). Morgan Kaufmann, San Francisco, pp 71–77 Burges CJC (1996) Simplified support vector decision rules. In: Saitta L (ed) Machine Learning, Proceedings of the 13th international conference (ICML ’96). Morgan Kaufmann, San Francisco, pp 71–77
2.
go back to reference Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MATHCrossRef Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244MATHCrossRef
3.
go back to reference Chen S, Hong X, Harris CJ, Sharkey PM (2004) Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans Syst Man Cybern Part B 34(2):898–911CrossRef Chen S, Hong X, Harris CJ, Sharkey PM (2004) Sparse modelling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans Syst Man Cybern Part B 34(2):898–911CrossRef
4.
go back to reference Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRef Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300CrossRef
5.
go back to reference Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific Publishing, SingaporeMATH Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J (2002) Least squares support vector machines. World Scientific Publishing, SingaporeMATH
6.
go back to reference Vapnik VN (1998) Statistical learning theory. Wiley, New YorkMATH Vapnik VN (1998) Statistical learning theory. Wiley, New YorkMATH
7.
go back to reference Cawley GC, Talbot NLC (2002) Improved sparse least-squares support vector machines. Neurocomputing 48:1025–1031MATHCrossRef Cawley GC, Talbot NLC (2002) Improved sparse least-squares support vector machines. Neurocomputing 48:1025–1031MATHCrossRef
8.
go back to reference Valyon J, Horvath G (2004) A sparse least squares support vector machine classifier. In: Proceedings of international joint conference on neural networks (IJCNN 2004), vol 1. Budapest, Hungary, pp 543–548 Valyon J, Horvath G (2004) A sparse least squares support vector machine classifier. In: Proceedings of international joint conference on neural networks (IJCNN 2004), vol 1. Budapest, Hungary, pp 543–548
9.
go back to reference Abe S (2005) Support vector machines for pattern classification. Springer, London Abe S (2005) Support vector machines for pattern classification. Springer, London
10.
go back to reference Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460–474CrossRef Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460–474CrossRef
11.
go back to reference Kaieda K, Abe S (2004) KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions. Int J Approx Reason 37(3):145–253CrossRef Kaieda K, Abe S (2004) KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions. Int J Approx Reason 37(3):145–253CrossRef
12.
go back to reference Rätsch G, Onoda T, Müller K-R (2001) Soft margins for AdaBoost. Mach Learn 42(3):287–320MATHCrossRef Rätsch G, Onoda T, Müller K-R (2001) Soft margins for AdaBoost. Mach Learn 42(3):287–320MATHCrossRef
13.
go back to reference Müller K-R, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRef Müller K-R, Mika S, Rätsch G, Tsuda K, Schölkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201CrossRef
14.
go back to reference Abe S (2001) Pattern classification: neuro-fuzzy methods and their comparison. Springer, LondonMATH Abe S (2001) Pattern classification: neuro-fuzzy methods and their comparison. Springer, LondonMATH
15.
go back to reference Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188 Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188
16.
go back to reference Bezdek JC, Keller JM, Krishnapuram R, Kuncheva LI, Pal NR (1999) Will the real iris data please stand up? IEEE Trans Fuzzy Syst 7(3):368–369CrossRef Bezdek JC, Keller JM, Krishnapuram R, Kuncheva LI, Pal NR (1999) Will the real iris data please stand up? IEEE Trans Fuzzy Syst 7(3):368–369CrossRef
17.
go back to reference Takenaga H, Abe S, Takatoo M, Kayama M, Kitamura T, Okuyama Y (1991) Input layer optimization of neural networks by sensitivity analysis and its application to recognition of numerals. Electr Eng Jpn 111(4):130–138CrossRef Takenaga H, Abe S, Takatoo M, Kayama M, Kitamura T, Okuyama Y (1991) Input layer optimization of neural networks by sensitivity analysis and its application to recognition of numerals. Electr Eng Jpn 111(4):130–138CrossRef
18.
go back to reference Weiss SM, Kapouleas I (1989) An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In: Proceedings of the 11th international joint conference on artificial intelligence. Detroit, pp 781–787 Weiss SM, Kapouleas I (1989) An empirical comparison of pattern recognition, neural nets, and machine learning classification methods. In: Proceedings of the 11th international joint conference on artificial intelligence. Detroit, pp 781–787
19.
go back to reference Hashizume A, Motoike J, Yabe R (1998) Fully automated blood cell differential system and its application. In: Proceedings of the IUPAC 3rd international congress on automation and new technology in the clinical laboratory. Kobe, Japan, pp 297–302 Hashizume A, Motoike J, Yabe R (1998) Fully automated blood cell differential system and its application. In: Proceedings of the IUPAC 3rd international congress on automation and new technology in the clinical laboratory. Kobe, Japan, pp 297–302
20.
go back to reference Lan M-S, Takenaga H, Abe S (1994) Character recognition using fuzzy rules extracted from data. In: Proceedings of the 3rd IEEE international conference on fuzzy systems, vol 1. Orlando, pp 415–420 Lan M-S, Takenaga H, Abe S (1994) Character recognition using fuzzy rules extracted from data. In: Proceedings of the 3rd IEEE international conference on fuzzy systems, vol 1. Orlando, pp 415–420
Metadata
Title
Sparse least squares support vector training in the reduced empirical feature space
Author
Shigeo Abe
Publication date
01-08-2007
Publisher
Springer-Verlag
Published in
Pattern Analysis and Applications / Issue 3/2007
Print ISSN: 1433-7541
Electronic ISSN: 1433-755X
DOI
https://doi.org/10.1007/s10044-007-0062-1

Other articles of this Issue 3/2007

Pattern Analysis and Applications 3/2007 Go to the issue

Premium Partner