Skip to main content
Top

2015 | OriginalPaper | Chapter

17. Spatial Dynamics

Author : Christian Kuehn

Published in: Multiple Time Scale Dynamics

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, the main topic is traveling waves for time-dependent spatially extended systems in one space dimension. Note that we have already extensively discussed various techniques to prove the existence of waves for partial differential equations (PDEs); see, e.g., Chapter 6 Hence, we focus here on further topics beyond the existence of waves in PDEs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
[ABBG02]
go back to reference P. Ashwin, M.V. Bartuccelli, T.J. Bridges, and S.A. Gourley. Travelling fronts for the KPP equation with spatio-temporal delay. Zeitschr. Angewand. Math. Phys., 53(1):103–122, 2002.MATHMathSciNet P. Ashwin, M.V. Bartuccelli, T.J. Bridges, and S.A. Gourley. Travelling fronts for the KPP equation with spatio-temporal delay. Zeitschr. Angewand. Math. Phys., 53(1):103–122, 2002.MATHMathSciNet
[ACY03]
go back to reference S. Ai, S.-N. Chow, and Y. Yi. Travelling wave solutions in a tissue interaction model for skin pattern formation. J. Dyn. Diff. Eq., 15(2):517–534, 2003.MATHMathSciNet S. Ai, S.-N. Chow, and Y. Yi. Travelling wave solutions in a tissue interaction model for skin pattern formation. J. Dyn. Diff. Eq., 15(2):517–534, 2003.MATHMathSciNet
[ADD12]
go back to reference E.O. Alzahrani, F.A. Davidson, and N. Dodds. Reversing invasion in bistable systems. J. Math. Biol., 65:1101–1124, 2012.MATHMathSciNet E.O. Alzahrani, F.A. Davidson, and N. Dodds. Reversing invasion in bistable systems. J. Math. Biol., 65:1101–1124, 2012.MATHMathSciNet
[AG13]
go back to reference G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear. G.G. Avalos and N.B. Gallegos. Quasi-steady state model determination for systems with singular perturbations modelled by bond graphs. Math. Computer Mod. Dyn. Syst., pages 1–21, 2013. to appear.
[AGJ90]
go back to reference J.C. Alexander, R.A. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.MATHMathSciNet J.C. Alexander, R.A. Gardner, and C.K.R.T. Jones. A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math., 410:167–212, 1990.MATHMathSciNet
[AGK+11]
go back to reference Z. Artstein, C.W. Gear, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Analysis and computation of a discrete KdV-Burgers type equation with fast dispersion and slow diffusion. SIAM J. Numer. Anal., 49(5):2124–2143, 2011.MATHMathSciNet Z. Artstein, C.W. Gear, I.G. Kevrekidis, M. Slemrod, and E.S. Titi. Analysis and computation of a discrete KdV-Burgers type equation with fast dispersion and slow diffusion. SIAM J. Numer. Anal., 49(5):2124–2143, 2011.MATHMathSciNet
[AHM08]
go back to reference M. Alfaro, D. Hilhorst, and H. Matano. The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system. J. Differen. Equat., 245(2):505–565, 2008.MATHMathSciNet M. Alfaro, D. Hilhorst, and H. Matano. The singular limit of the Allen–Cahn equation and the FitzHugh–Nagumo system. J. Differen. Equat., 245(2):505–565, 2008.MATHMathSciNet
[Ai07]
go back to reference S. Ai. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differential Equat., 232(1):104–133, 2007.MATHMathSciNet S. Ai. Traveling wave fronts for generalized Fisher equations with spatio-temporal delays. J. Differential Equat., 232(1):104–133, 2007.MATHMathSciNet
[Ai10]
go back to reference S. Ai. Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal., 42(2): 833–856, 2010.MATHMathSciNet S. Ai. Traveling waves for a model of a fungal disease over a vineyard. SIAM J. Math. Anal., 42(2): 833–856, 2010.MATHMathSciNet
[AK13b]
go back to reference F. Achleitner and C. Kuehn. On bounded positive stationary solutions for a nonlocal Fisher-KPP equation. arXiv:1307.3480, pages 1–20, 2013. F. Achleitner and C. Kuehn. On bounded positive stationary solutions for a nonlocal Fisher-KPP equation. arXiv:1307.3480, pages 1–20, 2013.
[AMPP87]
go back to reference S.B. Angenent, J. Mallet-Paret, and L.A. Peletier. Stable transition layers in a semilinear boundary value problem. J. Differential Equat., 67(2):212–242, 1987.MATHMathSciNet S.B. Angenent, J. Mallet-Paret, and L.A. Peletier. Stable transition layers in a semilinear boundary value problem. J. Differential Equat., 67(2):212–242, 1987.MATHMathSciNet
[AS12]
go back to reference F. Achleitner and P. Szmolyan. Saddle-node bifurcation of viscous profiles. Physica D, 241(20): 1703–1717, 2012.MATHMathSciNet F. Achleitner and P. Szmolyan. Saddle-node bifurcation of viscous profiles. Physica D, 241(20): 1703–1717, 2012.MATHMathSciNet
[Bar83]
go back to reference J.W. Barker. Interactions of fast and slow waves in hyperbolic systems with two time scales. Math. Methods Appl. Sci., 5(3):292–307, 1983.MATHMathSciNet J.W. Barker. Interactions of fast and slow waves in hyperbolic systems with two time scales. Math. Methods Appl. Sci., 5(3):292–307, 1983.MATHMathSciNet
[Bar84]
go back to reference J.W. Barker. Interactions of fast and slow waves in problems with two time scales. SIAM J. Math. Anal., 15(3):500–513, 1984.MATHMathSciNet J.W. Barker. Interactions of fast and slow waves in problems with two time scales. SIAM J. Math. Anal., 15(3):500–513, 1984.MATHMathSciNet
[BD97]
go back to reference E. Brunet and B. Derrida. Shift in the velocity front due to a cutoff. Phys. Rev. E, 56(3):2597–2604, 1997.MathSciNet E. Brunet and B. Derrida. Shift in the velocity front due to a cutoff. Phys. Rev. E, 56(3):2597–2604, 1997.MathSciNet
[BDK06]
go back to reference M. Beck, A. Doelman, and T.J. Kaper. A geometric construction of traveling waves in a bioremediation model. J. Nonlinear Sci., 16(4):329–349, 2006.MATHMathSciNet M. Beck, A. Doelman, and T.J. Kaper. A geometric construction of traveling waves in a bioremediation model. J. Nonlinear Sci., 16(4):329–349, 2006.MATHMathSciNet
[BE95]
go back to reference V. Booth and T. Erneux. Understanding propagation failure as a slow capture near a limit point. SIAM J. Appl. Math., 55(5):1372–1389, 1995.MATHMathSciNet V. Booth and T. Erneux. Understanding propagation failure as a slow capture near a limit point. SIAM J. Appl. Math., 55(5):1372–1389, 1995.MATHMathSciNet
[BJSW08]
go back to reference M. Beck, C.K.R.T. Jones, D. Schaeffer, and M. Wechselberger. Electrical waves in a one-dimensional model of cardiac tissue. SIAM J. Appl. Dyn. Syst., 7(4):1558–1581, 2008.MATHMathSciNet M. Beck, C.K.R.T. Jones, D. Schaeffer, and M. Wechselberger. Electrical waves in a one-dimensional model of cardiac tissue. SIAM J. Appl. Dyn. Syst., 7(4):1558–1581, 2008.MATHMathSciNet
[BNS85]
go back to reference H. Berestycki, B. Nicolaenko, and B. Scheurer. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal., 16(6):1207–1242, 1985.MATHMathSciNet H. Berestycki, B. Nicolaenko, and B. Scheurer. Traveling wave solutions to combustion models and their singular limits. SIAM J. Math. Anal., 16(6):1207–1242, 1985.MATHMathSciNet
[Bos00]
go back to reference A. Bose. A geometric approach to singularly perturbed nonlocal reaction–diffusion equations. SIAM J. Math. Anal., 31(2):431–454, 2000.MATH A. Bose. A geometric approach to singularly perturbed nonlocal reaction–diffusion equations. SIAM J. Math. Anal., 31(2):431–454, 2000.MATH
[Bre12b]
go back to reference P.C. Bressloff. Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor., 45:(033001), 2012. P.C. Bressloff. Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor., 45:(033001), 2012.
[BST08]
go back to reference W.-J. Beyn, S. Selle, and V. Thümmler. Freezing multipulses and multifronts. SIAM J. Appl. Dyn. Syst., 7(2):577–608, 2008.MATHMathSciNet W.-J. Beyn, S. Selle, and V. Thümmler. Freezing multipulses and multifronts. SIAM J. Appl. Dyn. Syst., 7(2):577–608, 2008.MATHMathSciNet
[BW11]
go back to reference M. Beck and C.E. Wayne. Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Rev., 53(1):129–153, 2011.MATHMathSciNet M. Beck and C.E. Wayne. Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Rev., 53(1):129–153, 2011.MATHMathSciNet
[CB02]
go back to reference A. Carpio and L.L. Bonilla. Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math., 63(2):619–635, 2002.MATHMathSciNet A. Carpio and L.L. Bonilla. Pulse propagation in discrete systems of coupled excitable cells. SIAM J. Appl. Math., 63(2):619–635, 2002.MATHMathSciNet
[Cho03]
go back to reference S.-N. Chow. Lattice dynamical systems. In J.W. Macki and P. Zecca, editors, Dynamical Systems, pages 1–102. Springer, 2003. S.-N. Chow. Lattice dynamical systems. In J.W. Macki and P. Zecca, editors, Dynamical Systems, pages 1–102. Springer, 2003.
[CL10]
go back to reference G.A. Cassatella Contra and D. Levi. Discrete multiscale analysis: a biatomic lattice system. J. Nonlinear Math. Phys., 17:357–377, 2010.MATHMathSciNet G.A. Cassatella Contra and D. Levi. Discrete multiscale analysis: a biatomic lattice system. J. Nonlinear Math. Phys., 17:357–377, 2010.MATHMathSciNet
[CMJ09]
go back to reference N. Costanzino, V. Manukian, and C.K.R.T. Jones. Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal., 41(5):2088–2106, 2009.MATHMathSciNet N. Costanzino, V. Manukian, and C.K.R.T. Jones. Solitary waves of the regularized short pulse and Ostrovsky equations. SIAM J. Math. Anal., 41(5):2088–2106, 2009.MATHMathSciNet
[CML02]
go back to reference D. Cai, D.W. McLaughlin, and K.T.R. Mc Laughlin. The nonlinear Schrödinger equation as both a PDE and a dynamical system. In B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 599–675. Elsevier, 2002. D. Cai, D.W. McLaughlin, and K.T.R. Mc Laughlin. The nonlinear Schrödinger equation as both a PDE and a dynamical system. In B. Fiedler, editor, Handbook of Dynamical Systems 2, pages 599–675. Elsevier, 2002.
[Coo05]
go back to reference S. Coombes. Waves, bumps, and patterns in neural field theories. Biol. Cybern., 93:91–108, 2005.MATHMathSciNet S. Coombes. Waves, bumps, and patterns in neural field theories. Biol. Cybern., 93:91–108, 2005.MATHMathSciNet
[Daf10]
go back to reference C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2010. C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer, 2010.
[DDvGV03]
go back to reference G. Derks, A. Doelman, S.A. van Gils, and T. Visser. Travelling waves in a singularly perturbed sine-Gordon equation. Physica D, 180:40–70, 2003.MATHMathSciNet G. Derks, A. Doelman, S.A. van Gils, and T. Visser. Travelling waves in a singularly perturbed sine-Gordon equation. Physica D, 180:40–70, 2003.MATHMathSciNet
[DEK00]
go back to reference A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray-Scott Model I: asymptotic construction and stability. SIAM J. Appl. Math., 61(3):1080–1102, 2000.MATHMathSciNet A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray-Scott Model I: asymptotic construction and stability. SIAM J. Appl. Math., 61(3):1080–1102, 2000.MATHMathSciNet
[DEK06]
go back to reference A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray–Scott Model II: geometric theory, bifurcations, and splitting dynamics. SIAM J. Appl. Math., 61(6): 2036–2062, 2006. A. Doelman, W. Eckhaus, and T.J. Kaper. Slowly modulated two-pulse solutions in the Gray–Scott Model II: geometric theory, bifurcations, and splitting dynamics. SIAM J. Appl. Math., 61(6): 2036–2062, 2006.
[DGK01]
go back to reference A. Doelman, R.A. Gardner, and T.J. Kaper. Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J., 50(1):443–507, 2001.MATHMathSciNet A. Doelman, R.A. Gardner, and T.J. Kaper. Large stable pulse solutions in reaction–diffusion equations. Indiana Univ. Math. J., 50(1):443–507, 2001.MATHMathSciNet
[DGK02]
go back to reference A. Doelman, R.A. Gardner, and T.J. Kaper. A Stability Index Analysis of 1-D Patterns of the Gray-Scott Model, volume 737 of Mem. Amer. Math. Soc. AMS, 2002. A. Doelman, R.A. Gardner, and T.J. Kaper. A Stability Index Analysis of 1-D Patterns of the Gray-Scott Model, volume 737 of Mem. Amer. Math. Soc. AMS, 2002.
[DHV04]
go back to reference A. Doelman, G. Hek, and N. Valkhoff. Stabilization by slow diffusion in a real Ginzburg–Landau system. J. Nonlinear Sci., 14(3):237–278, 2004.MATHMathSciNet A. Doelman, G. Hek, and N. Valkhoff. Stabilization by slow diffusion in a real Ginzburg–Landau system. J. Nonlinear Sci., 14(3):237–278, 2004.MATHMathSciNet
[DHV07]
go back to reference A. Doelman, G. Hek, and N. Valkhoff. Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity, 20:357–389, 2007.MATHMathSciNet A. Doelman, G. Hek, and N. Valkhoff. Algebraically decaying pulses in a Ginzburg–Landau system with a neutrally stable mode. Nonlinearity, 20:357–389, 2007.MATHMathSciNet
[DIN04]
go back to reference A. Doelman, D. Iron, and Y. Nishiura. Destabilization of fronts in a class of bistable systems. SIAM J. Math. Anal., 35(6):1420–1450, 2004.MATHMathSciNet A. Doelman, D. Iron, and Y. Nishiura. Destabilization of fronts in a class of bistable systems. SIAM J. Math. Anal., 35(6):1420–1450, 2004.MATHMathSciNet
[DK03]
go back to reference A. Doelman and T.J. Kaper. Semistrong pulse interactions in a class of coupled reaction–diffusion equations. SIAM J. Appl. Dyn. Syst., 2(1):53–96, 2003.MATHMathSciNet A. Doelman and T.J. Kaper. Semistrong pulse interactions in a class of coupled reaction–diffusion equations. SIAM J. Appl. Dyn. Syst., 2(1):53–96, 2003.MATHMathSciNet
[DKP07]
go back to reference A. Doelman, T.J. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.MATHMathSciNet A. Doelman, T.J. Kaper, and K. Promislow. Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer–Meinhardt model. SIAM J. Math. Anal., 38(6):1760–1787, 2007.MATHMathSciNet
[DMS03]
go back to reference C.R. Doering, C. Mueller, and P. Smereka. Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A, 325:243–259, 2003.MATHMathSciNet C.R. Doering, C. Mueller, and P. Smereka. Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality. Physica A, 325:243–259, 2003.MATHMathSciNet
[Doc92]
go back to reference J.D. Dockery. Existence of standing pulse solutions for an excitable activator-inhibitory system. J. Dyn. Diff. Eq., 4(2):231–257, 1992.MATHMathSciNet J.D. Dockery. Existence of standing pulse solutions for an excitable activator-inhibitory system. J. Dyn. Diff. Eq., 4(2):231–257, 1992.MATHMathSciNet
[Doe93]
go back to reference A. Doelman. Traveling waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci., 3(1): 225–266, 1993.MATHMathSciNet A. Doelman. Traveling waves in the complex Ginzburg–Landau equation. J. Nonlinear Sci., 3(1): 225–266, 1993.MATHMathSciNet
[Doe96]
go back to reference A. Doelman. Breaking the hidden symmetry in the Ginzburg–Landau equation. Physica D, 97(4): 398–428, 1996.MATHMathSciNet A. Doelman. Breaking the hidden symmetry in the Ginzburg–Landau equation. Physica D, 97(4): 398–428, 1996.MATHMathSciNet
[DPK07a]
go back to reference F. Dumortier, N. Popovic, and T.J. Kaper. The asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 326(2):1007–1023, 2007.MATHMathSciNet F. Dumortier, N. Popovic, and T.J. Kaper. The asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 326(2):1007–1023, 2007.MATHMathSciNet
[DPK07b]
go back to reference F. Dumortier, N. Popovic, and T.J. Kaper. The critical wave speed for the Fisher–Kolmogorov–Petrowskii–Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.MATHMathSciNet F. Dumortier, N. Popovic, and T.J. Kaper. The critical wave speed for the Fisher–Kolmogorov–Petrowskii–Piscounov equation with cut-off. Nonlinearity, 20(4):855–877, 2007.MATHMathSciNet
[DPK10]
go back to reference F. Dumortier, N. Popovic, and T.J. Kaper. A geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off. Physica D, 239(20):1984–1999, 2010.MATHMathSciNet F. Dumortier, N. Popovic, and T.J. Kaper. A geometric approach to bistable front propagation in scalar reaction–diffusion equations with cut-off. Physica D, 239(20):1984–1999, 2010.MATHMathSciNet
[DSSS09]
go back to reference A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wavetrains. Memoirs of the AMS, 199(934):1–105, 2009.MathSciNet A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wavetrains. Memoirs of the AMS, 199(934):1–105, 2009.MathSciNet
[DvHK09]
go back to reference A. Doelman, P. van Heijster, and T.J. Kaper. Pulse dynamics in a three-component system: existence analysis. J. Dyn. Diff. Eq., 21:73–115, 2009.MATH A. Doelman, P. van Heijster, and T.J. Kaper. Pulse dynamics in a three-component system: existence analysis. J. Dyn. Diff. Eq., 21:73–115, 2009.MATH
[DvHK13]
go back to reference A. Doelman, P. van Heijster, and T.J. Kaper. An explicit theory for pulses in two component, singularly perturbed, reaction–diffusion equations. J. Dyn. Diff. Eq., pages 1–42, 2013. accepted, to appear. A. Doelman, P. van Heijster, and T.J. Kaper. An explicit theory for pulses in two component, singularly perturbed, reaction–diffusion equations. J. Dyn. Diff. Eq., pages 1–42, 2013. accepted, to appear.
[EF77]
go back to reference J.W. Evans and J.A. Feroe. Local stability of the nerve impulse. Math. Biosci., 37(1):23–50, 1977.MATH J.W. Evans and J.A. Feroe. Local stability of the nerve impulse. Math. Biosci., 37(1):23–50, 1977.MATH
[EM93]
go back to reference G.B. Ermentrout and J.B. McLeod. Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinburgh A, 123(3):461–478, 1993.MATHMathSciNet G.B. Ermentrout and J.B. McLeod. Existence and uniqueness of travelling waves for a neural network. Proc. R. Soc. Edinburgh A, 123(3):461–478, 1993.MATHMathSciNet
[EN93]
go back to reference T. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction–diffusion systems. Physica D, 67(1):237–244, 1993.MATHMathSciNet T. Erneux and G. Nicolis. Propagating waves in discrete bistable reaction–diffusion systems. Physica D, 67(1):237–244, 1993.MATHMathSciNet
[EV05]
go back to reference C. Elmer and E.S. Van Vleck. Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math., 65(4):1153–1174, 2005.MATHMathSciNet C. Elmer and E.S. Van Vleck. Spatially discrete FitzHugh–Nagumo equations. SIAM J. Appl. Math., 65(4):1153–1174, 2005.MATHMathSciNet
[Eva72]
go back to reference J. Evans. Nerve axon equations III: stability of nerve impulses. Indiana U. Math. J., 22:577–594, 1972.MATH J. Evans. Nerve axon equations III: stability of nerve impulses. Indiana U. Math. J., 22:577–594, 1972.MATH
[Eva02]
go back to reference L.C. Evans. Partial Differential Equations. AMS, 2002. L.C. Evans. Partial Differential Equations. AMS, 2002.
[EvS00]
go back to reference U. Ebert and W. van Saarloos. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D, 146:1–99, 2000.MATHMathSciNet U. Ebert and W. van Saarloos. Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D, 146:1–99, 2000.MATHMathSciNet
[Fif88]
go back to reference P.C. Fife. Dynamics of internal layers and diffusive interfaces. SIAM, 1988. P.C. Fife. Dynamics of internal layers and diffusive interfaces. SIAM, 1988.
[Fis37]
go back to reference R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:353–369, 1937. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:353–369, 1937.
[FL12]
go back to reference H. Fan and X.-B. Lin. Standing waves for phase transitions in a spherically symmetric nozzle. SIAM J. Math. Anal., 44(1):405–436, 2012.MATHMathSciNet H. Fan and X.-B. Lin. Standing waves for phase transitions in a spherically symmetric nozzle. SIAM J. Math. Anal., 44(1):405–436, 2012.MATHMathSciNet
[Flo91]
go back to reference G. Flores. Stability analysis for the slow traveling pulse of the FitzHugh–Nagumo system. SIAM J. Math. Anal., 22(2):392–399, 1991.MATHMathSciNet G. Flores. Stability analysis for the slow traveling pulse of the FitzHugh–Nagumo system. SIAM J. Math. Anal., 22(2):392–399, 1991.MATHMathSciNet
[FM77]
go back to reference P. Fife and J.B. McLeod. The approach of solutions nonlinear diffusion equations to travelling front solutions. Arch. Rational Mech. Anal., 65:335–361, 1977.MATHMathSciNet P. Fife and J.B. McLeod. The approach of solutions nonlinear diffusion equations to travelling front solutions. Arch. Rational Mech. Anal., 65:335–361, 1977.MATHMathSciNet
[Fri92]
go back to reference A. Friedman. Partial Differential Equations of Parabolic Type. Dover, 1992. A. Friedman. Partial Differential Equations of Parabolic Type. Dover, 1992.
[FS95]
go back to reference H. Freistühler and P. Szmolyan. Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal., 26(1):112–128, 1995.MATHMathSciNet H. Freistühler and P. Szmolyan. Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves. SIAM J. Math. Anal., 26(1):112–128, 1995.MATHMathSciNet
[FS02a]
go back to reference H. Freistühler and P. Szmolyan. Spectral stability of small shock waves. Arch. Rational Mech. Anal., 164:287–309, 2002.MATH H. Freistühler and P. Szmolyan. Spectral stability of small shock waves. Arch. Rational Mech. Anal., 164:287–309, 2002.MATH
[FS10a]
go back to reference H. Freistühler and P. Szmolyan. Spectral stability of small-amplitude viscous shock waves in several space dimensions. Arch. Rational Mech. Anal., 195(2):353–373, 2010.MATH H. Freistühler and P. Szmolyan. Spectral stability of small-amplitude viscous shock waves in several space dimensions. Arch. Rational Mech. Anal., 195(2):353–373, 2010.MATH
[Gar84]
go back to reference R. Gardner. Existence of travelling wave solutions of predator–prey systems via the connection index. SIAM J. Appl. Math., 44(1):56–79, 1984.MATHMathSciNet R. Gardner. Existence of travelling wave solutions of predator–prey systems via the connection index. SIAM J. Appl. Math., 44(1):56–79, 1984.MATHMathSciNet
[GC02]
go back to reference S.A. Gourley and M.A.J. Chaplain. Travelling fronts in a food-limited population model with time delay. Proc. Roy. Soc. Edinburgh Sect. A, 132:75–89, 2002.MATHMathSciNet S.A. Gourley and M.A.J. Chaplain. Travelling fronts in a food-limited population model with time delay. Proc. Roy. Soc. Edinburgh Sect. A, 132:75–89, 2002.MATHMathSciNet
[GGJ07]
go back to reference A. Ghazaryan, P. Gordon, and C.K.R.T. Jones. Traveling waves in porous media combustion: uniqueness of waves for small thermal diffusivity. J. Dyn. Diff. Eq., 19(4):951–966, 2007.MATHMathSciNet A. Ghazaryan, P. Gordon, and C.K.R.T. Jones. Traveling waves in porous media combustion: uniqueness of waves for small thermal diffusivity. J. Dyn. Diff. Eq., 19(4):951–966, 2007.MATHMathSciNet
[Gha09a]
go back to reference A. Ghazaryan. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J., 58:181–212, 2009.MATHMathSciNet A. Ghazaryan. Nonlinear stability of high Lewis number combustion fronts. Indiana Univ. Math. J., 58:181–212, 2009.MATHMathSciNet
[Gha09b]
go back to reference A. Ghazaryan. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst. A, 24:809–826, 2009.MATHMathSciNet A. Ghazaryan. On the stability of high Lewis number combustion fronts. Discrete Contin. Dyn. Syst. A, 24:809–826, 2009.MATHMathSciNet
[Gha10]
go back to reference A. Ghazaryan. On the existence of high Lewis number combustion fronts. Math. Comput. Simul., 82(6):1133–1141, 2010.MathSciNet A. Ghazaryan. On the existence of high Lewis number combustion fronts. Math. Comput. Simul., 82(6):1133–1141, 2010.MathSciNet
[GHL13]
go back to reference A. Ghazaryan, J. Humphreys, and J. Lytle. Spectral behavior of combustion fronts with high exothermicity. SIAM J. Appl. Math., 73(1):422–437, 2013.MATHMathSciNet A. Ghazaryan, J. Humphreys, and J. Lytle. Spectral behavior of combustion fronts with high exothermicity. SIAM J. Appl. Math., 73(1):422–437, 2013.MATHMathSciNet
[GJ91]
go back to reference R. Gardner and C.K.R.T. Jones. Stability of travelling wave solutions of diffusive predator–prey systems. Trans. Amer. Math. Soc., 327(2):465–524, 1991.MATHMathSciNet R. Gardner and C.K.R.T. Jones. Stability of travelling wave solutions of diffusive predator–prey systems. Trans. Amer. Math. Soc., 327(2):465–524, 1991.MATHMathSciNet
[GK98]
go back to reference P.P.N. De Groen and G.E. Karadzhov. Exponentially slow travelling waves on a finite interval for Burgers’-type equation. Electron. J. Differential Equat., 1980(30):1–38, 1998. P.P.N. De Groen and G.E. Karadzhov. Exponentially slow travelling waves on a finite interval for Burgers’-type equation. Electron. J. Differential Equat., 1980(30):1–38, 1998.
[GK01]
go back to reference P.P.N. De Groen and G.E. Karadzhov. Slow travelling waves on a finite interval for Burgers’-type equations. J. Comput. Appl. Math., 132:155–189, 2001.MATHMathSciNet P.P.N. De Groen and G.E. Karadzhov. Slow travelling waves on a finite interval for Burgers’-type equations. J. Comput. Appl. Math., 132:155–189, 2001.MATHMathSciNet
[Gou00]
go back to reference S.A. Gourley. Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delay. Math. Comput. Model., 32(7):843–853, 2000.MATHMathSciNet S.A. Gourley. Travelling fronts in the diffusive Nicholson’s blowflies equation with distributed delay. Math. Comput. Model., 32(7):843–853, 2000.MATHMathSciNet
[GR03]
go back to reference S.A. Gourley and S. Ruan. Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal., 35(3):806–822, 2003.MATHMathSciNet S.A. Gourley and S. Ruan. Convergence and travelling fronts in functional differential equations with nonlocal terms: a competition model. SIAM J. Math. Anal., 35(3):806–822, 2003.MATHMathSciNet
[GSS13]
go back to reference A. Ghazaryan, S. Schecter, and P.L. Simon. Gasless combustion fronts with heat loss. SIAM J. Appl. Math., 73(3):1303–1326, 2013.MATHMathSciNet A. Ghazaryan, S. Schecter, and P.L. Simon. Gasless combustion fronts with heat loss. SIAM J. Appl. Math., 73(3):1303–1326, 2013.MATHMathSciNet
[Hal99]
go back to reference G. Haller. Homoclinic jumping in the perturbed nonlinear Schrödinger equation. Comm. Pure Appl. Math., 152(1):1–47, 1999.MathSciNet G. Haller. Homoclinic jumping in the perturbed nonlinear Schrödinger equation. Comm. Pure Appl. Math., 152(1):1–47, 1999.MathSciNet
[HDK13]
go back to reference M. Holzer, A. Doelman, and T.J. Kaper. Existence and stability of traveling pulses in a reaction–diffusion-mechanics system. J. Nonlinear Sci., 23(1):129–177, 2013.MATHMathSciNet M. Holzer, A. Doelman, and T.J. Kaper. Existence and stability of traveling pulses in a reaction–diffusion-mechanics system. J. Nonlinear Sci., 23(1):129–177, 2013.MATHMathSciNet
[Hek01]
go back to reference G. Hek. Fronts and pulses in a class of reaction–diffusion equations: a geometric singular perturbation approach. Nonlinearity, 14(1):35–72, 2001.MATHMathSciNet G. Hek. Fronts and pulses in a class of reaction–diffusion equations: a geometric singular perturbation approach. Nonlinearity, 14(1):35–72, 2001.MATHMathSciNet
[Hen81]
go back to reference D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.MATH D. Henry. Geometric Theory of Semilinear Parabolic Equations. Springer, Berlin Heidelberg, Germany, 1981.MATH
[HHH13]
go back to reference J.M. Hong, C.-H. Hsu, and B.-C. Huang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Comm. Pure Appl. Anal., 12(3):1501–1526, 2013.MATHMathSciNet J.M. Hong, C.-H. Hsu, and B.-C. Huang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Comm. Pure Appl. Anal., 12(3):1501–1526, 2013.MATHMathSciNet
[HL99]
go back to reference J.K. Hale and X.-B. Lin. Multiple internal layer solutions generated by spatially oscillatory perturbations. J. Differential Equat., 154(2):364–418, 1999.MATHMathSciNet J.K. Hale and X.-B. Lin. Multiple internal layer solutions generated by spatially oscillatory perturbations. J. Differential Equat., 154(2):364–418, 1999.MATHMathSciNet
[HM09a]
go back to reference M. Hairer and J.C. Mattingly. Slow energy dissipation in anharmonic oscillator chains. Comm. Pure. Appl. Math., 62(8):999–1032, 2009.MATHMathSciNet M. Hairer and J.C. Mattingly. Slow energy dissipation in anharmonic oscillator chains. Comm. Pure. Appl. Math., 62(8):999–1032, 2009.MATHMathSciNet
[HN01]
go back to reference F. Hamel and N. Nadirashvili. Travelling fronts and entire solutions of the Fisher–KPP equation in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal., 157:91–163, 2001.MATHMathSciNet F. Hamel and N. Nadirashvili. Travelling fronts and entire solutions of the Fisher–KPP equation in \(\mathbb{R}^{N}\). Arch. Ration. Mech. Anal., 157:91–163, 2001.MATHMathSciNet
[HPS11]
go back to reference H.J. Hupkes, D. Pelinovsky, and B. Sandstede. Propagation failure in the discrete Nagumo equation. Proc. Amer. Math. Soc., 139:3537–3551, 2011.MATHMathSciNet H.J. Hupkes, D. Pelinovsky, and B. Sandstede. Propagation failure in the discrete Nagumo equation. Proc. Amer. Math. Soc., 139:3537–3551, 2011.MATHMathSciNet
[HPT00]
go back to reference J.K. Hale, L.A. Peletier, and W.C. Troy. Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis. SIAM J. Appl. Math., 61(1):102–130, 2000.MATHMathSciNet J.K. Hale, L.A. Peletier, and W.C. Troy. Exact homoclinic and heteroclinic solutions of the Gray–Scott model for autocatalysis. SIAM J. Appl. Math., 61(1):102–130, 2000.MATHMathSciNet
[HS10c]
go back to reference H.J. Hupkes and B. Sandstede. Traveling pulse solutions for the discrete FitzHugh–Nagumo system. SIAM J. Appl. Dyn. Sys., 9(3):827–882, 2010.MATHMathSciNet H.J. Hupkes and B. Sandstede. Traveling pulse solutions for the discrete FitzHugh–Nagumo system. SIAM J. Appl. Dyn. Sys., 9(3):827–882, 2010.MATHMathSciNet
[HS12]
go back to reference M. Holzer and A. Scheel. A slow pushed front in a Lotka–Volterra competition model. Nonlinearity, 25(7):2151–2179, 2012.MATHMathSciNet M. Holzer and A. Scheel. A slow pushed front in a Lotka–Volterra competition model. Nonlinearity, 25(7):2151–2179, 2012.MATHMathSciNet
[HS13]
go back to reference H.J. Hupkes and B. Sandstede. Stability of traveling pulse solutions for the discrete FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 365:251–301, 2013.MATHMathSciNet H.J. Hupkes and B. Sandstede. Stability of traveling pulse solutions for the discrete FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 365:251–301, 2013.MATHMathSciNet
[HV07]
go back to reference G. Hek and N. Valkhoff. Pulses in a complex Ginzburg–Landau system: persistence under coupling with slow diffusion. Physica D, 232(1):62–85, 2007.MATHMathSciNet G. Hek and N. Valkhoff. Pulses in a complex Ginzburg–Landau system: persistence under coupling with slow diffusion. Physica D, 232(1):62–85, 2007.MATHMathSciNet
[Jal04]
[Jon84]
go back to reference C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 286(2): 431–469, 1984.MATHMathSciNet C.K.R.T. Jones. Stability of the travelling wave solution of the FitzHugh–Nagumo system. Trans. Amer. Math. Soc., 286(2): 431–469, 1984.MATHMathSciNet
[Kap05]
go back to reference T. Kapitula. Stability analysis of pulses via the Evans function: dissipative systems. In Dissipative Solitons, volume 661 of Lecture Notes in Physics, pages 407–427. Springer, 2005. T. Kapitula. Stability analysis of pulses via the Evans function: dissipative systems. In Dissipative Solitons, volume 661 of Lecture Notes in Physics, pages 407–427. Springer, 2005.
[Kar93]
go back to reference A. Karma. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett., 71:1103–1106, 1993.MATHMathSciNet A. Karma. Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys. Rev. Lett., 71:1103–1106, 1993.MATHMathSciNet
[Kat80]
go back to reference T. Kato. Perturbation Theory for Linear Operators. Springer, 1980. T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.
[KB09b]
go back to reference Y.N. Kyrychko and K.B. Blyuss. Persistence of travelling waves in a generalized Fisher equation. Phys. Lett. A, 373(6):668–674, 2009.MATH Y.N. Kyrychko and K.B. Blyuss. Persistence of travelling waves in a generalized Fisher equation. Phys. Lett. A, 373(6):668–674, 2009.MATH
[KBB05]
go back to reference Y.N. Kyrychko, M.V. Bartuccelli, and K.B. Blyuss. Persistence of travelling wave solutions of a fourth order diffusion system. J. Comp. Appl. Math., 176(2):433–443, 2005.MATHMathSciNet Y.N. Kyrychko, M.V. Bartuccelli, and K.B. Blyuss. Persistence of travelling wave solutions of a fourth order diffusion system. J. Comp. Appl. Math., 176(2):433–443, 2005.MATHMathSciNet
[Kee80]
[Kee87]
go back to reference J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.MATHMathSciNet J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math., 47:556–572, 1987.MATHMathSciNet
[KEW06]
go back to reference T. Kolokolnikov, T. Erneux, and J. Wei. Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D, 214(1):63–77, 2006.MATHMathSciNet T. Kolokolnikov, T. Erneux, and J. Wei. Mesa-type patterns in the one-dimensional Brusselator and their stability. Physica D, 214(1):63–77, 2006.MATHMathSciNet
[Kin13]
go back to reference J.R. King. Wavespeed selection in the heterogeneous Fisher equation: slowly varying inhomogeneity. Networks and Heterogeneous Media, 8(1):343–378, 2013.MATHMathSciNet J.R. King. Wavespeed selection in the heterogeneous Fisher equation: slowly varying inhomogeneity. Networks and Heterogeneous Media, 8(1):343–378, 2013.MATHMathSciNet
[KKS00a]
go back to reference B. Katzengruber, M. Krupa, and P. Szmolyan. Bifurcation of traveling waves in extrinsic semiconductors. Physica D, 144(1): 1–19, 2000.MATHMathSciNet B. Katzengruber, M. Krupa, and P. Szmolyan. Bifurcation of traveling waves in extrinsic semiconductors. Physica D, 144(1): 1–19, 2000.MATHMathSciNet
[KKS04]
go back to reference T. Kapitula, J.N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004.MATHMathSciNet T. Kapitula, J.N. Kutz, and B. Sandstede. The Evans function for nonlocal equations. Indiana U. Math. J., 53(4):1095–1126, 2004.MATHMathSciNet
[Kno00]
go back to reference R. Knobel. An Introduction to the Mathematical Theory of Waves. AMS, 2000. R. Knobel. An Introduction to the Mathematical Theory of Waves. AMS, 2000.
[KP13]
go back to reference T. Kapitula and K. Promislow. Spectral and Dynamical Stability of Nonlinear Waves. Springer, 2013. T. Kapitula and K. Promislow. Spectral and Dynamical Stability of Nonlinear Waves. Springer, 2013.
[KPP91]
go back to reference A. Kolmogorov, I. Petrovskii, and N. Piscounov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In V.M. Tikhomirov, editor, Selected Works of A. N. Kolmogorov I, pages 248–270. Kluwer, 1991. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1–25, 1937. A. Kolmogorov, I. Petrovskii, and N. Piscounov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. In V.M. Tikhomirov, editor, Selected Works of A. N. Kolmogorov I, pages 248–270. Kluwer, 1991. Translated by V. M. Volosov from Bull. Moscow Univ., Math. Mech. 1, 1–25, 1937.
[KR00]
go back to reference T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.MATHMathSciNet T. Kapitula and J. Rubin. Existence and stability of standing hole solutions to complex Ginzburg–Landau equations. Nonlinearity, 13(1):77–112, 2000.MATHMathSciNet
[KR14]
go back to reference C. Kuehn and M.G. Riedler. Large deviations for nonlocal stochastic neural fields. J. Math. Neurosci., 4(1):1–33, 2014.MathSciNet C. Kuehn and M.G. Riedler. Large deviations for nonlocal stochastic neural fields. J. Math. Neurosci., 4(1):1–33, 2014.MathSciNet
[KSWW06]
go back to reference T. Kolokolnikov, W. Sun, M.J. Ward, and J. Wei. The stability of a stripe for the Gierer–Meinhardt model and the effect of saturation. SIAM J. Appl. Dyn. Syst., 5(2):313–363, 2006.MATHMathSciNet T. Kolokolnikov, W. Sun, M.J. Ward, and J. Wei. The stability of a stripe for the Gierer–Meinhardt model and the effect of saturation. SIAM J. Appl. Dyn. Syst., 5(2):313–363, 2006.MATHMathSciNet
[KT12]
go back to reference B.L. Keyfitz and C. Tsikkou. Conserving the wrong variables in gas dynamics: a Riemann solution with singular shocks. Quart. Appl. Math., 70:407–436, 2012.MATHMathSciNet B.L. Keyfitz and C. Tsikkou. Conserving the wrong variables in gas dynamics: a Riemann solution with singular shocks. Quart. Appl. Math., 70:407–436, 2012.MATHMathSciNet
[LE92]
go back to reference J.P. Laplante and T. Erneux. Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem., 96(12): 4931–4934, 1992. J.P. Laplante and T. Erneux. Propagation failure in arrays of coupled bistable chemical reactors. J. Phys. Chem., 96(12): 4931–4934, 1992.
[LeV92]
go back to reference R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1992. R.J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1992.
[Li03]
go back to reference Y. Li. Homoclinic tubes in discrete nonlinear Schrödinger equation under Hamiltonian perturbations. Nonlinear Dyn., 31(4):393–434, 2003. Y. Li. Homoclinic tubes in discrete nonlinear Schrödinger equation under Hamiltonian perturbations. Nonlinear Dyn., 31(4):393–434, 2003.
[Lin01]
go back to reference X.-B. Lin. Construction and asymptotic stability of structurally stable internal layer solutions. Trans. Amer. Math. Soc., 353:2983–3043, 2001.MATHMathSciNet X.-B. Lin. Construction and asymptotic stability of structurally stable internal layer solutions. Trans. Amer. Math. Soc., 353:2983–3043, 2001.MATHMathSciNet
[Lin06]
go back to reference X.-B. Lin. Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach. J. Dyn. Diff. Eq., 18(1):1–52, 2006.MATH X.-B. Lin. Slow eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws: an analytic approach. J. Dyn. Diff. Eq., 18(1):1–52, 2006.MATH
[Liu04]
go back to reference W. Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discr. Cont. Dyn. Syst., 10(4):871–884, 2004.MATH W. Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discr. Cont. Dyn. Syst., 10(4):871–884, 2004.MATH
[LO93]
go back to reference J.G. Laforgue and R.E. O’Malley. Supersensitive boundary value problems. In Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pages 215–223. Springer, 1993. J.G. Laforgue and R.E. O’Malley. Supersensitive boundary value problems. In Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters, pages 215–223. Springer, 1993.
[LO13a]
go back to reference D.J.B. Lloyd and H. O’Farrell. On localised hotspots of an urban crime model. Physica D, 253:23–39, 2013.MATHMathSciNet D.J.B. Lloyd and H. O’Farrell. On localised hotspots of an urban crime model. Physica D, 253:23–39, 2013.MATHMathSciNet
[LS03]
go back to reference X.-B. Lin and S. Schecter. Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws. SIAM J. Math. Anal., 35(4):884–921, 2003.MATHMathSciNet X.-B. Lin and S. Schecter. Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws. SIAM J. Math. Anal., 35(4):884–921, 2003.MATHMathSciNet
[LT03]
go back to reference C.R. Laing and W.C. Troy. PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst., 2(3):487–516, 2003.MATHMathSciNet C.R. Laing and W.C. Troy. PDE methods for nonlocal models. SIAM J. Appl. Dyn. Syst., 2(3):487–516, 2003.MATHMathSciNet
[LTGE02]
go back to reference C.R. Laing, W.C. Troy, B. Gutkin, and B. Ermentrout. Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97, 2002.MATHMathSciNet C.R. Laing, W.C. Troy, B. Gutkin, and B. Ermentrout. Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math., 63(1):62–97, 2002.MATHMathSciNet
[LW10b]
go back to reference G. Lv and M. Wang. Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model. Nonl. Anal.: Real World Appl., 11(3):2035–2043, 2010. G. Lv and M. Wang. Existence, uniqueness and asymptotic behavior of traveling wave fronts for a vector disease model. Nonl. Anal.: Real World Appl., 11(3):2035–2043, 2010.
[Mag78]
go back to reference K. Maginu. Stability of periodic travelling wave solutions of a nerve conduction equation. J. Math. Biol., 6(1):49–57, 1978.MATHMathSciNet K. Maginu. Stability of periodic travelling wave solutions of a nerve conduction equation. J. Math. Biol., 6(1):49–57, 1978.MATHMathSciNet
[Mag80]
go back to reference K. Maginu. Existence and stability of periodic travelling wave solutions to Nagumo’s nerve equation. J. Math. Biol., 10(2):133–153, 1980.MATHMathSciNet K. Maginu. Existence and stability of periodic travelling wave solutions to Nagumo’s nerve equation. J. Math. Biol., 10(2):133–153, 1980.MATHMathSciNet
[Mag85]
go back to reference K. Maginu. Geometrical characteristics associated with stability and bifurcations of periodic travelling waves in reaction–diffusion systems. SIAM J. Appl. Math., 45(5):750–774, 1985.MATHMathSciNet K. Maginu. Geometrical characteristics associated with stability and bifurcations of periodic travelling waves in reaction–diffusion systems. SIAM J. Appl. Math., 45(5):750–774, 1985.MATHMathSciNet
[Man06]
go back to reference M.B.A. Mansour. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations. Comm. Math. Sci., 4(4):731–739, 2006.MATH M.B.A. Mansour. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations. Comm. Math. Sci., 4(4):731–739, 2006.MATH
[Man09a]
go back to reference M.B.A. Mansour. Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation. Appl. Math. Mech., 30(4):513–516, 2009.MATHMathSciNet M.B.A. Mansour. Existence of traveling wave solutions for a nonlinear dissipative-dispersive equation. Appl. Math. Mech., 30(4):513–516, 2009.MATHMathSciNet
[Man09b]
go back to reference M.B.A. Mansour. Travelling wave solutions for a singularly perturbed Burgers-KdV equation. Pramana, 73(5):799–806, 2009. M.B.A. Mansour. Travelling wave solutions for a singularly perturbed Burgers-KdV equation. Pramana, 73(5):799–806, 2009.
[Man13]
go back to reference M.B.A. Mansour. A geometric construction of traveling waves in a generalized nonlinear dispersive–dissipative equation. J. Geom. Phys., pages 1–11, 2013. in press. M.B.A. Mansour. A geometric construction of traveling waves in a generalized nonlinear dispersive–dissipative equation. J. Geom. Phys., pages 1–11, 2013. in press.
[MCJS09]
go back to reference V. Manukian, N. Costanzino, C.K.R.T. Jones, and B. Sandstede. Existence of multi-pulses of the regularized short-pulse and Ostrovsky equations. J. Dyn. Diff. Eq., 21:607–622, 2009.MATHMathSciNet V. Manukian, N. Costanzino, C.K.R.T. Jones, and B. Sandstede. Existence of multi-pulses of the regularized short-pulse and Ostrovsky equations. J. Dyn. Diff. Eq., 21:607–622, 2009.MATHMathSciNet
[MDK00]
go back to reference D.S. Morgan, A. Doelman, and T.J. Kaper. Stationary periodic patterns in the 1D Gray-Scott model. Math. Appl. Anal., 7(1):105–150, 2000.MATHMathSciNet D.S. Morgan, A. Doelman, and T.J. Kaper. Stationary periodic patterns in the 1D Gray-Scott model. Math. Appl. Anal., 7(1):105–150, 2000.MATHMathSciNet
[MKK00]
go back to reference G.S. Medvedev, T.J. Kaper, and N. Kopell. A reaction–diffusion system with periodic front dynamics. SIAM J. Appl. Math., 60(5):1601–1638, 2000.MATHMathSciNet G.S. Medvedev, T.J. Kaper, and N. Kopell. A reaction–diffusion system with periodic front dynamics. SIAM J. Appl. Math., 60(5):1601–1638, 2000.MATHMathSciNet
[MLR11]
go back to reference K. Manktelow, M.J. Leamy, and M. Ruzzene. Multiple scales analysis of wave-wave interactions in a cubically nonlinear atomic chain. Nonlinear Dyn., 63:193–203, 2011.MATHMathSciNet K. Manktelow, M.J. Leamy, and M. Ruzzene. Multiple scales analysis of wave-wave interactions in a cubically nonlinear atomic chain. Nonlinear Dyn., 63:193–203, 2011.MATHMathSciNet
[MP99]
go back to reference J. Mallet-Paret. The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq., 8:49–128, 1999.MathSciNet J. Mallet-Paret. The global structure of traveling waves in spatially discrete dynamical systems. J. Dyn. Diff. Eq., 8:49–128, 1999.MathSciNet
[MP12]
go back to reference P. De Maesschalck and N. Popovic. Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 386(2):542–558, 2012.MATHMathSciNet P. De Maesschalck and N. Popovic. Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction–diffusion equations. J. Math. Anal. Appl., 386(2):542–558, 2012.MATHMathSciNet
[MR13]
go back to reference C. Melcher and J.D.M. Rademacher. Patterns formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations. arXiv:1309.5523, pages 1–27, 2013. C. Melcher and J.D.M. Rademacher. Patterns formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations. arXiv:1309.5523, pages 1–27, 2013.
[MS74]
go back to reference J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974. J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press, 1974.
[MS03b]
go back to reference D. Marchesin and S. Schecter. Oxidation heat pulses in two-phase expansive flow in porous media. Z. Angew. Math. Phys., 54(1):48–83, 2003.MATHMathSciNet D. Marchesin and S. Schecter. Oxidation heat pulses in two-phase expansive flow in porous media. Z. Angew. Math. Phys., 54(1):48–83, 2003.MATHMathSciNet
[MS03e]
go back to reference C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol., 65:767–793, 2003. C.C. Mitchell and D.G. Schaeffer. A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol., 65:767–793, 2003.
[MS06]
go back to reference J.C. Da Mota and S. Schecter. Combustion fronts in a porous medium with two layers. J. Dyn. Diff. Eq., 18(3):615–665, 2006.MATH J.C. Da Mota and S. Schecter. Combustion fronts in a porous medium with two layers. J. Dyn. Diff. Eq., 18(3):615–665, 2006.MATH
[MS09]
go back to reference V. Manukian and S. Schecter. Travelling waves for a thin liquid film with surfactant on an inclined plane. Nonlinearity, 22(1):85–122, 2009.MATHMathSciNet V. Manukian and S. Schecter. Travelling waves for a thin liquid film with surfactant on an inclined plane. Nonlinearity, 22(1):85–122, 2009.MATHMathSciNet
[NF87]
go back to reference Y. Nishiura and H. Fujii. Stability of singularly perturbed solutions to systems of reaction–diffusion equations. SIAM J. Math. Anal., 18(6):1726–1770, 1987.MATHMathSciNet Y. Nishiura and H. Fujii. Stability of singularly perturbed solutions to systems of reaction–diffusion equations. SIAM J. Math. Anal., 18(6):1726–1770, 1987.MATHMathSciNet
[Nii97]
go back to reference S. Nii. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh–Nagumo equations. SIAM J. Math. Anal., 28(5):1094–1112, 1997.MATHMathSciNet S. Nii. Stability of travelling multiple-front (multiple-back) wave solutions of the FitzHugh–Nagumo equations. SIAM J. Math. Anal., 28(5):1094–1112, 1997.MATHMathSciNet
[Nis94]
go back to reference Y. Nishiura. Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit. In Dynamics Reported, pages 25–103. Springer, 1994. Y. Nishiura. Coexistence of infinitely many stable solutions to reaction diffusion systems in the singular limit. In Dynamics Reported, pages 25–103. Springer, 1994.
[NMIF90]
go back to reference Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii. Singular limit analysis of stability of traveling wave solutions in bistable reaction–diffusion systems. SIAM J. Math. Anal., 21(1):85–122, 1990.MATHMathSciNet Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii. Singular limit analysis of stability of traveling wave solutions in bistable reaction–diffusion systems. SIAM J. Math. Anal., 21(1):85–122, 1990.MATHMathSciNet
[OHLM03]
go back to reference J. Ockendon, S. Howison, A. Lacey, and A. Movchan. Applied Partial Differential Equations. OUP, 2003. J. Ockendon, S. Howison, A. Lacey, and A. Movchan. Applied Partial Differential Equations. OUP, 2003.
[OR75]
go back to reference P. Ortoleva and J. Ross. Theory of propagation of discontinuities in kinetic systems with multiple time scales: fronts, front multiplicity, and pulses. J. Chem. Phys., 63:3398–3408, 1975. P. Ortoleva and J. Ross. Theory of propagation of discontinuities in kinetic systems with multiple time scales: fronts, front multiplicity, and pulses. J. Chem. Phys., 63:3398–3408, 1975.
[PE01a]
go back to reference D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math., 62(1):206–225, 2001. D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: I. Traveling fronts and pulses. SIAM J. Appl. Math., 62(1):206–225, 2001.
[PE01b]
go back to reference D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math., 62(1):226–243, 2001. D.J. Pinto and G.B. Ermentrout. Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM J. Appl. Math., 62(1):226–243, 2001.
[PK06]
go back to reference N. Popović and T.J. Kaper. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction–diffusion equations. J. Dyn. Diff. Eq., 18(1):103–139, 2006.MATH N. Popović and T.J. Kaper. Rigorous asymptotic expansions for critical wave speeds in a family of scalar reaction–diffusion equations. J. Dyn. Diff. Eq., 18(1):103–139, 2006.MATH
[Pop11]
go back to reference N. Popovic. A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cut-off. Z. Angew. Math. Phys., 62(3):405–437, 2011.MATHMathSciNet N. Popovic. A geometric analysis of front propagation in a family of degenerate reaction–diffusion equations with cut-off. Z. Angew. Math. Phys., 62(3):405–437, 2011.MATHMathSciNet
[Pop12]
go back to reference N. Popovic. A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off. Physica D, 241:1976–1984, 2012.MathSciNet N. Popovic. A geometric analysis of front propagation in an integrable Nagumo equation with a linear cut-off. Physica D, 241:1976–1984, 2012.MathSciNet
[Rad13]
go back to reference J.D.M. Rademacher. First and second order semistrong interaction in reaction–diffusion systems. SIAM J. Appl. Dyn. Syst., 12(1):175–203, 2013.MATHMathSciNet J.D.M. Rademacher. First and second order semistrong interaction in reaction–diffusion systems. SIAM J. Appl. Dyn. Syst., 12(1):175–203, 2013.MATHMathSciNet
[RP12]
go back to reference I. Ratas and K. Pyragas. Pulse propagation and failure in the discrete FitzHugh–Nagumo model subject to high-frequency stimulation. Phys. Rev. E, 86:046211, 2012. I. Ratas and K. Pyragas. Pulse propagation and failure in the discrete FitzHugh–Nagumo model subject to high-frequency stimulation. Phys. Rev. E, 86:046211, 2012.
[RR04]
go back to reference M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Springer, 2004. M. Renardy and R.C. Rogers. An Introduction to Partial Differential Equations. Springer, 2004.
[RV98]
go back to reference J.-M. Roquejoffre and J.-P. Vila. Stability of ZND detonation waves in the Majda combustion model. Asymp. Anal., 18(3):329–348, 1998.MATHMathSciNet J.-M. Roquejoffre and J.-P. Vila. Stability of ZND detonation waves in the Majda combustion model. Asymp. Anal., 18(3):329–348, 1998.MATHMathSciNet
[RW95a]
go back to reference L.G. Reyna and M.J. Ward. Metastable internal layer dynamics for the viscous Cahn–Hilliard equation. Meth. Appl. Anal., 2:285–306, 1995.MATHMathSciNet L.G. Reyna and M.J. Ward. Metastable internal layer dynamics for the viscous Cahn–Hilliard equation. Meth. Appl. Anal., 2:285–306, 1995.MATHMathSciNet
[RW95b]
go back to reference L.G. Reyna and M.J. Ward. On the exponentially slow motion of a viscous shock. Comm. Pure Appl. Math., 48(2):79–120, 1995.MATHMathSciNet L.G. Reyna and M.J. Ward. On the exponentially slow motion of a viscous shock. Comm. Pure Appl. Math., 48(2):79–120, 1995.MATHMathSciNet
[RW01]
go back to reference V. Rottschäfer and C.E. Wayne. Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation. J. Differential Equat., 176:532–560, 2001.MATH V. Rottschäfer and C.E. Wayne. Existence and stability of traveling fronts in the extended Fisher-Kolmogorov equation. J. Differential Equat., 176:532–560, 2001.MATH
[RX04]
go back to reference S. Ruan and D. Xiao. Stability of steady states and existence of travelling waves in a vector-disease model. Proc. R. Soc. Edinburgh A, 134(5):991–1011, 2004.MATHMathSciNet S. Ruan and D. Xiao. Stability of steady states and existence of travelling waves in a vector-disease model. Proc. R. Soc. Edinburgh A, 134(5):991–1011, 2004.MATHMathSciNet
[San01]
go back to reference B. Sandstede. Stability of travelling waves. In B. Fiedler, editor, Handbook of Dynamical Systems, volume 2, pages 983–1055. Elsevier, 2001. B. Sandstede. Stability of travelling waves. In B. Fiedler, editor, Handbook of Dynamical Systems, volume 2, pages 983–1055. Elsevier, 2001.
[Sch02]
go back to reference S. Schecter. Undercompressive shock waves and the Dafermos regularization. Nonlinearity, 15(4): 1361–1377, 2002.MATHMathSciNet S. Schecter. Undercompressive shock waves and the Dafermos regularization. Nonlinearity, 15(4): 1361–1377, 2002.MATHMathSciNet
[Sch04]
go back to reference S. Schecter. Existence of Dafermos profiles for singular shocks. J. Differential Equat., 205(1):185–210, 2004.MATHMathSciNet S. Schecter. Existence of Dafermos profiles for singular shocks. J. Differential Equat., 205(1):185–210, 2004.MATHMathSciNet
[Sch06]
go back to reference S. Schecter. Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory. J. Dyn. Diff. Eq., 18(1):53–101, 2006.MATHMathSciNet S. Schecter. Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory. J. Dyn. Diff. Eq., 18(1):53–101, 2006.MATHMathSciNet
[SM01]
go back to reference S. Schecter and D. Marchesin. Geometric singular perturbation analysis of oxidation heat pulses for two-phase flow in porous media. Bull. Braz. Math. Soc., 32(3):237–270, 2001.MATHMathSciNet S. Schecter and D. Marchesin. Geometric singular perturbation analysis of oxidation heat pulses for two-phase flow in porous media. Bull. Braz. Math. Soc., 32(3):237–270, 2001.MATHMathSciNet
[Smo94]
go back to reference J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1994. J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer, 1994.
[SPM04]
go back to reference S. Schecter, B.J. Plohr, and D. Marchesin. Computation of Riemann solutions using the Dafermos regularization and continuation. Discr. Cont. Dyn. Syst., 10:965–986, 2004.MATHMathSciNet S. Schecter, B.J. Plohr, and D. Marchesin. Computation of Riemann solutions using the Dafermos regularization and continuation. Discr. Cont. Dyn. Syst., 10:965–986, 2004.MATHMathSciNet
[SS04b]
go back to reference S. Schecter and P. Szmolyan. Composite waves in the Dafermos regularization. J. Dyn. Diff. Eq., 16(3):847–867, 2004.MATHMathSciNet S. Schecter and P. Szmolyan. Composite waves in the Dafermos regularization. J. Dyn. Diff. Eq., 16(3):847–867, 2004.MATHMathSciNet
[SS09]
go back to reference S. Schecter and P. Szmolyan. Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points. SIAM J. Applied Dynamical Systems, 8(3):822–853, 2009.MATHMathSciNet S. Schecter and P. Szmolyan. Persistence of rarefactions under Dafermos regularization: blow-up and an exchange lemma for gain-of-stability turning points. SIAM J. Applied Dynamical Systems, 8(3):822–853, 2009.MATHMathSciNet
[ST97]
go back to reference H. Suzuki and O. Toshiyuki. On the spectra of pulses in a nearly integrable system. SIAM J. Appl. Math., 57(2):485–500, 1997.MATHMathSciNet H. Suzuki and O. Toshiyuki. On the spectra of pulses in a nearly integrable system. SIAM J. Appl. Math., 57(2):485–500, 1997.MATHMathSciNet
[Str08]
go back to reference W.A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons, 2008. W.A. Strauss. Partial Differential Equations: An Introduction. John Wiley & Sons, 2008.
[SW00c]
go back to reference X. Sun and M.J. Ward. Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math., 105(3):203–234, 2000.MATHMathSciNet X. Sun and M.J. Ward. Dynamics and coarsening of interfaces for the viscous Cahn–Hilliard equation in one spatial dimension. Stud. Appl. Math., 105(3):203–234, 2000.MATHMathSciNet
[SWR05]
go back to reference X. Sun, M.J. Ward, and R. Russell. The slow dynamics of two-spike solutions for the Gray-Scott and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst., 4(4):904–953, 2005.MATHMathSciNet X. Sun, M.J. Ward, and R. Russell. The slow dynamics of two-spike solutions for the Gray-Scott and Gierer–Meinhardt systems: competition and oscillatory instabilities. SIAM J. Appl. Dyn. Syst., 4(4):904–953, 2005.MATHMathSciNet
[SZ04]
go back to reference H.L. Smith and X.-Q. Zhao. Traveling waves in a bio-reactor model. Nonl. Anal. Real World Appl., 5(5):895–909, 2004.MATHMathSciNet H.L. Smith and X.-Q. Zhao. Traveling waves in a bio-reactor model. Nonl. Anal. Real World Appl., 5(5):895–909, 2004.MATHMathSciNet
[Szm89a]
go back to reference P. Szmolyan. A singular perturbation analysis of the transient semiconductor-device equations. SIAM J. Appl. Math., 49(4):1122–1135, 1989.MATHMathSciNet P. Szmolyan. A singular perturbation analysis of the transient semiconductor-device equations. SIAM J. Appl. Math., 49(4):1122–1135, 1989.MATHMathSciNet
[Szm89b]
[TN94]
go back to reference M. Taniguchi and Y. Nishiura. Instability of planar interfaces in reaction–diffusion systems. SIAM J. Math. Anal., 25(1):99–134, 1994.MATHMathSciNet M. Taniguchi and Y. Nishiura. Instability of planar interfaces in reaction–diffusion systems. SIAM J. Math. Anal., 25(1):99–134, 1994.MATHMathSciNet
[Vak10]
go back to reference A.F. Vakakis. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn., 61:443–463, 2010.MATHMathSciNet A.F. Vakakis. Relaxation oscillations, subharmonic orbits and chaos in the dynamics of a linear lattice with a local essentially nonlinear attachment. Nonlinear Dyn., 61:443–463, 2010.MATHMathSciNet
[VD13]
go back to reference F. Veerman and A. Doelman. Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM J. Appl. Dyn. Syst., 12(1):28–60, 2013.MATHMathSciNet F. Veerman and A. Doelman. Pulses in a Gierer–Meinhardt equation with a slow nonlinearity. SIAM J. Appl. Dyn. Syst., 12(1):28–60, 2013.MATHMathSciNet
[VH08]
go back to reference P. Várkonyi and P. Holmes. On synchronization and traveling waves in chains of relaxation oscillators with an application to Lamprey CPG. SIAM J. Appl. Dyn. Syst., 7(3):766–794, 2008.MATHMathSciNet P. Várkonyi and P. Holmes. On synchronization and traveling waves in chains of relaxation oscillators with an application to Lamprey CPG. SIAM J. Appl. Dyn. Syst., 7(3):766–794, 2008.MATHMathSciNet
[vHDK08]
go back to reference P. van Heijster, A. Doelman, and T.J. Kaper. Pulse dynamics in a three-component system: stability and bifurcations. Physica D, 237(24):3335–3368, 2008.MATHMathSciNet P. van Heijster, A. Doelman, and T.J. Kaper. Pulse dynamics in a three-component system: stability and bifurcations. Physica D, 237(24):3335–3368, 2008.MATHMathSciNet
[vHDK+11]
go back to reference P. van Heijster, A. Doelman, T.J. Kaper, Y. Nishiura, and K.-I. Ueda. Pinned fronts in heterogeneous media of jump type. Nonlinearity, 24:127–157, 2011.MATHMathSciNet P. van Heijster, A. Doelman, T.J. Kaper, Y. Nishiura, and K.-I. Ueda. Pinned fronts in heterogeneous media of jump type. Nonlinearity, 24:127–157, 2011.MATHMathSciNet
[vHDKP10]
go back to reference P. van Heijster, A. Doelman, T.J. Kaper, and K. Promislow. Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst., 9(2):292–332, 2010.MATHMathSciNet P. van Heijster, A. Doelman, T.J. Kaper, and K. Promislow. Front interactions in a three-component system. SIAM J. Appl. Dyn. Syst., 9(2):292–332, 2010.MATHMathSciNet
[vHS11]
go back to reference P. van Heijster and B. Sandstede. Planar radial spots in a three-component FitzHugh–Nagumo system. J. Nonlinear Sci., 21:705–745, 2011.MATHMathSciNet P. van Heijster and B. Sandstede. Planar radial spots in a three-component FitzHugh–Nagumo system. J. Nonlinear Sci., 21:705–745, 2011.MATHMathSciNet
[vS03]
go back to reference W. van Saarloos. Front propagation into unstable states. Physics Reports, 386:29–222, 2003.MATH W. van Saarloos. Front propagation into unstable states. Physics Reports, 386:29–222, 2003.MATH
[VVV94]
go back to reference A.I. Volpert, V. Volpert, and V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Amer. Math. Soc., 1994. A.I. Volpert, V. Volpert, and V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Amer. Math. Soc., 1994.
[WB13]
go back to reference M.A. Webber and P.C. Bressloff. The effects of noise on binocular rivalry waves: a stochastic neural field model. J. Stat. Mech., 2013:P03001, 2013.MathSciNet M.A. Webber and P.C. Bressloff. The effects of noise on binocular rivalry waves: a stochastic neural field model. J. Stat. Mech., 2013:P03001, 2013.MathSciNet
[WC73]
go back to reference H. Wilson and J. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern., 13(2):55–80, 1973.MATH H. Wilson and J. Cowan. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biol. Cybern., 13(2):55–80, 1973.MATH
[WWL11]
go back to reference L. Wang, Y. Wu, and T. Li. Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion. Physica D, 240(11):971–983, 2011.MATHMathSciNet L. Wang, Y. Wu, and T. Li. Exponential stability of large-amplitude traveling fronts for quasi-linear relaxation systems with diffusion. Physica D, 240(11):971–983, 2011.MATHMathSciNet
[Wol94]
go back to reference G. Wolansky. On the slow evolution of quasi-stationary shock waves. J. Dyn. Diff. Eq., 6(2):247–276, 1994.MATHMathSciNet G. Wolansky. On the slow evolution of quasi-stationary shock waves. J. Dyn. Diff. Eq., 6(2):247–276, 1994.MATHMathSciNet
[WP10]
go back to reference M. Wechselberger and G.J. Pettet. Folds, canards and shocks in advection–reaction–diffusion models. Nonlinearity, 23(8):1949–1969, 2010.MATHMathSciNet M. Wechselberger and G.J. Pettet. Folds, canards and shocks in advection–reaction–diffusion models. Nonlinearity, 23(8):1949–1969, 2010.MATHMathSciNet
[WR95]
go back to reference M.J. Ward and L.G. Reyna. Internal layers, small eigenvalues, and the sensitivity of metastable motion. SIAM J. Appl. Math., 55(2):425–445, 1995.MATHMathSciNet M.J. Ward and L.G. Reyna. Internal layers, small eigenvalues, and the sensitivity of metastable motion. SIAM J. Appl. Math., 55(2):425–445, 1995.MATHMathSciNet
[WW07]
go back to reference K. Wang and W. Wang. Propagation of HBV with spatial dependence. Math. Biosci., 210(1):78–95, 2007.MATHMathSciNet K. Wang and W. Wang. Propagation of HBV with spatial dependence. Math. Biosci., 210(1):78–95, 2007.MATHMathSciNet
[WZ05]
go back to reference Y. Wu and X. Zhao. The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems. Physica D, 200(3):325–358, 2005.MATHMathSciNet Y. Wu and X. Zhao. The existence and stability of travelling waves with transition layers for some singular cross-diffusion systems. Physica D, 200(3):325–358, 2005.MATHMathSciNet
[YTE01]
go back to reference A.C. Yew, D.H. Terman, and G.B. Ermentrout. Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math., 61(5):1578–1604, 2001.MATHMathSciNet A.C. Yew, D.H. Terman, and G.B. Ermentrout. Propagating activity patterns in thalamic neuronal networks. SIAM J. Appl. Math., 61(5):1578–1604, 2001.MATHMathSciNet
[ZP08]
go back to reference J. Zhang and Y. Peng. Travelling waves of the diffusive Nicholson’s blowflies equation with strong generic delay kernel and non-local effect. Nonl. Anal.: Theor. Meth. Appl., 68(5):1263–1270, 2008. J. Zhang and Y. Peng. Travelling waves of the diffusive Nicholson’s blowflies equation with strong generic delay kernel and non-local effect. Nonl. Anal.: Theor. Meth. Appl., 68(5):1263–1270, 2008.
[ZT88]
go back to reference E.C. Zachmanoglu and D.W. Thoe. Introduction to Partial Differential Equations with Applications. Dover, 1988. E.C. Zachmanoglu and D.W. Thoe. Introduction to Partial Differential Equations with Applications. Dover, 1988.
Metadata
Title
Spatial Dynamics
Author
Christian Kuehn
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-12316-5_17

Premium Partner