Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

12-10-2020 | Original Article

Spatiotemporal attention enhanced features fusion network for action recognition

Journal:
International Journal of Machine Learning and Cybernetics
Authors:
Danfeng Zhuang, Min Jiang, Jun Kong, Tianshan Liu
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In recent years, action recognition has become a popular and challenging task in computer vision. Nowadays, two-stream networks with appearance stream and motion stream can make judgment jointly and get excellent action classification results. But many of these networks fused the features or scores simply, and the characteristics in different streams were not utilized effectively. Meanwhile, the spatial context and temporal information were not fully utilized and processed in some networks. In this paper, a novel three-stream network spatiotemporal attention enhanced features fusion network for action recognition is proposed. Firstly, features fusion stream which includes multi-level features fusion blocks, is designed to train the two streams jointly and complement the two-stream network. Secondly, we model the channel features obtained by spatial context to enhance the ability to extract useful spatial semantic features at different levels. Thirdly, a temporal attention module which can model the temporal information makes the extracted temporal features more representative. A large number of experiments are performed on UCF101 dataset and HMDB51 dataset, which verify the effectiveness of our proposed network for action recognition.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article