Skip to main content
Top
Published in: International Journal of Speech Technology 3/2019

13-07-2019

Spoken language identification based on optimised genetic algorithm–extreme learning machine approach

Authors: Musatafa Abbas Abbood Albadr, Sabrina Tiun, Masri Ayob, Fahad Taha AL-Dhief

Published in: International Journal of Speech Technology | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The determination and classification of a recognized spoken language based on certain contents and datasets is known as the process of language identification (LID). The common process in carrying out LID entails the mandatory processing of data which enables the extraction of the necessary features for the process. The extraction involves a mature process whereby the development of the standard LID features have been conducted much earlier by means of a mel-frequency cepstral coefficients, shifted delta cepstral, Gaussian mixture model and i-vector-based framework. Despite that, improvement or rather optimisation still needs to be done on the learning process based on the extracted features so as to obtain all the knowledge embedded within them. The classification and regression analysis can benefit tremendously from the use of the extreme learning machine (ELM) which is a particularly effective and useful learning model for training a single-hidden layer neural network. However, owing to the randomly selected weights embedded in the input’s hidden layers, the model’s learning process is rendered to be ineffective or not optimised in its entirety. In this study, the ELM is employed as the learning model for LID due to the standard feature extraction. In addition, this study proposes a new optimised genetic algorithm (OGA) with three different selection criteria (i.e., roulette wheel, K-tournament and random) to select the appropriate initial weights and biases of the input hidden layer of the ELM, thereby minimising the classification error and improving the general performance of the ELM for LID. Results show the excellent performance of the proposed OGA–ELM with three different selection criteria, namely, roulette wheel, K-tournament and random, with the highest accuracies of 99.50%, 100% and 99.38%, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Albadr, M. A. A., et al. (2018). Spoken language identification based on the enhanced self-adjusting extreme learning machine approach. PLoS ONE, 13(4), e0194770.CrossRef Albadr, M. A. A., et al. (2018). Spoken language identification based on the enhanced self-adjusting extreme learning machine approach. PLoS ONE, 13(4), e0194770.CrossRef
go back to reference Albadra, M. A. A., & Tiuna, S. (2017). Extreme learning machine: A review. International Journal of Applied Engineering Research, 12(14), 4610–4623. Albadra, M. A. A., & Tiuna, S. (2017). Extreme learning machine: A review. International Journal of Applied Engineering Research, 12(14), 4610–4623.
go back to reference Andrushia, A. D., & Thangarajan, R. (2019). RTS-ELM: An approach for saliency-directed image segmentation with ripplet transform (pp. 1–13). Pattern Analysis and Applications. Andrushia, A. D., & Thangarajan, R. (2019). RTS-ELM: An approach for saliency-directed image segmentation with ripplet transform (pp. 1–13). Pattern Analysis and Applications.
go back to reference Atee, H. A., et al. (2016). A novel extreme learning machine-based cryptography system. Security and Communication Networks, 9(18), 5472–5489.CrossRef Atee, H. A., et al. (2016). A novel extreme learning machine-based cryptography system. Security and Communication Networks, 9(18), 5472–5489.CrossRef
go back to reference Bi, C. (2010). Deterministic local alignment methods improved by a simple genetic algorithm. Neurocomputing, 73(13–15), 2394–2406.CrossRef Bi, C. (2010). Deterministic local alignment methods improved by a simple genetic algorithm. Neurocomputing, 73(13–15), 2394–2406.CrossRef
go back to reference Contreras-Bolton, C., & Parada, V. (2015). Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PLoS ONE, 10(9), e0137724.CrossRef Contreras-Bolton, C., & Parada, V. (2015). Automatic combination of operators in a genetic algorithm to solve the traveling salesman problem. PLoS ONE, 10(9), e0137724.CrossRef
go back to reference Deng, C., et al. (2015). Extreme learning machines: New trends and applications. Science China Information Sciences, 58(2), 1–16.CrossRef Deng, C., et al. (2015). Extreme learning machines: New trends and applications. Science China Information Sciences, 58(2), 1–16.CrossRef
go back to reference Garg, A., Gupta, V., & Jindal, M. (2014). A survey of language identification techniques and applications. Journal of Emerging Technologies in Web Intelligence, 6(4), 388–400. Garg, A., Gupta, V., & Jindal, M. (2014). A survey of language identification techniques and applications. Journal of Emerging Technologies in Web Intelligence, 6(4), 388–400.
go back to reference Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.CrossRef Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.CrossRef
go back to reference Hafen, R. P., & Henry, M. J. (2012). Speech information retrieval: A review. Multimedia Systems, 18(6), 499–518.CrossRef Hafen, R. P., & Henry, M. J. (2012). Speech information retrieval: A review. Multimedia Systems, 18(6), 499–518.CrossRef
go back to reference Han, K., Yu, D., & Tashev, I. (2014). Speech emotion recognition using deep neural network and extreme learning machine. In Fifteenth annual conference of the international speech communication association. Han, K., Yu, D., & Tashev, I. (2014). Speech emotion recognition using deep neural network and extreme learning machine. In Fifteenth annual conference of the international speech communication association.
go back to reference Holland, J. H. (1975). Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence. Ann Arbor: University of Michigan Press.MATH Holland, J. H. (1975). Adaption in natural and artificial systems. An introductory analysis with application to biology, control and artificial intelligence. Ann Arbor: University of Michigan Press.MATH
go back to reference Huang, G.-B. (2014). An insight into extreme learning machines: Random neurons, random features and kernels. Cognitive Computation, 6(3), 376–390.CrossRef Huang, G.-B. (2014). An insight into extreme learning machines: Random neurons, random features and kernels. Cognitive Computation, 6(3), 376–390.CrossRef
go back to reference Huang, G.-B., Chen, L., & Siew, C. K. (2006a). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.CrossRef Huang, G.-B., Chen, L., & Siew, C. K. (2006a). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.CrossRef
go back to reference Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006b). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.CrossRef Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006b). Extreme learning machine: Theory and applications. Neurocomputing, 70(1), 489–501.CrossRef
go back to reference Huang, G.-B., et al. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.CrossRef Huang, G.-B., et al. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.CrossRef
go back to reference Huang, G., et al. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.CrossRef Huang, G., et al. (2014). Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, 44(12), 2405–2417.CrossRef
go back to reference Iosifidis, A., Tefas, A., & Pitas, I. (2016). Graph embedded extreme learning machine. IEEE Transactions on Cybernetics, 46(1), 311–324.CrossRef Iosifidis, A., Tefas, A., & Pitas, I. (2016). Graph embedded extreme learning machine. IEEE Transactions on Cybernetics, 46(1), 311–324.CrossRef
go back to reference Jiang, B., et al. (2014). Deep bottleneck features for spoken language identification. PLoS ONE, 9(7), e100795.CrossRef Jiang, B., et al. (2014). Deep bottleneck features for spoken language identification. PLoS ONE, 9(7), e100795.CrossRef
go back to reference Lan, Y., et al. (2013). An extreme learning machine approach for speaker recognition. Neural Computing and Applications, 22(3–4), 417–425.CrossRef Lan, Y., et al. (2013). An extreme learning machine approach for speaker recognition. Neural Computing and Applications, 22(3–4), 417–425.CrossRef
go back to reference Lefebvre, G., & Cumin, J. (2016). Recognizing human actions based on extreme learning machines. In 11th international joint conference on computer vision, imaging and computer graphics theory and applications. Lefebvre, G., & Cumin, J. (2016). Recognizing human actions based on extreme learning machines. In 11th international joint conference on computer vision, imaging and computer graphics theory and applications.
go back to reference Li, J., et al. (2015). LSTM time and frequency recurrence for automatic speech recognition. In 2015 IEEE workshop on automatic speech recognition and understanding (ASRU). IEEE. Li, J., et al. (2015). LSTM time and frequency recurrence for automatic speech recognition. In 2015 IEEE workshop on automatic speech recognition and understanding (ASRU). IEEE.
go back to reference Liang, N.-Y., et al. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 17(6), 1411–1423.CrossRef Liang, N.-Y., et al. (2006). A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Transactions on Neural Networks, 17(6), 1411–1423.CrossRef
go back to reference Liu, B., et al. (2016). Manifold regularized extreme learning machine. Neural Computing and Applications, 27(2), 255–269.CrossRef Liu, B., et al. (2016). Manifold regularized extreme learning machine. Neural Computing and Applications, 27(2), 255–269.CrossRef
go back to reference Michalewicz, Z., & Hartley, S. J. (1996). Genetic algorithms + data structures = evolution programs. Mathematical Intelligencer, 18(3), 71.CrossRef Michalewicz, Z., & Hartley, S. J. (1996). Genetic algorithms + data structures = evolution programs. Mathematical Intelligencer, 18(3), 71.CrossRef
go back to reference Mohamed, M. H. (2011). Rules extraction from constructively trained neural networks based on genetic algorithms. Neurocomputing, 74(17), 3180–3192.CrossRef Mohamed, M. H. (2011). Rules extraction from constructively trained neural networks based on genetic algorithms. Neurocomputing, 74(17), 3180–3192.CrossRef
go back to reference Nayak, P., et al. (2016). Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances. Neural Computing and Applications, 27(7), 2107–2122.CrossRef Nayak, P., et al. (2016). Comparison of modified teaching–learning-based optimization and extreme learning machine for classification of multiple power signal disturbances. Neural Computing and Applications, 27(7), 2107–2122.CrossRef
go back to reference Niu, P., et al. (2016). A kind of parameters self-adjusting extreme learning machine. Neural Processing Letters, 44(3), 813–830.CrossRef Niu, P., et al. (2016). A kind of parameters self-adjusting extreme learning machine. Neural Processing Letters, 44(3), 813–830.CrossRef
go back to reference Padmanabhan, S. A., & Kanchikere, J. (2019). An efficient face recognition system based on hybrid optimized KELM (pp. 1–21). Multimedia Tools and Applications. Padmanabhan, S. A., & Kanchikere, J. (2019). An efficient face recognition system based on hybrid optimized KELM (pp. 1–21). Multimedia Tools and Applications.
go back to reference Pal, M., Maxwell, A. E., & Warner, T. A. (2013). Kernel-based extreme learning machine for remote-sensing image classification. Remote Sensing Letters, 4(9), 853–862.CrossRef Pal, M., Maxwell, A. E., & Warner, T. A. (2013). Kernel-based extreme learning machine for remote-sensing image classification. Remote Sensing Letters, 4(9), 853–862.CrossRef
go back to reference Rujirakul, K., & So-In, C. (2018) Histogram equalized deep PCA with ELM classification for expressive face recognition. In 2018 international workshop on advanced image technology (IWAIT). IEEE. Rujirakul, K., & So-In, C. (2018) Histogram equalized deep PCA with ELM classification for expressive face recognition. In 2018 international workshop on advanced image technology (IWAIT). IEEE.
go back to reference Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian joint conference on artificial intelligence. Berlin: Springer. Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation. In Australasian joint conference on artificial intelligence. Berlin: Springer.
go back to reference Wang, Y., Cao, F., & Yuan, Y. (2011). A study on effectiveness of extreme learning machine. Neurocomputing, 74(16), 2483–2490.CrossRef Wang, Y., Cao, F., & Yuan, Y. (2011). A study on effectiveness of extreme learning machine. Neurocomputing, 74(16), 2483–2490.CrossRef
go back to reference Xiang, J., et al. (2014). Using extreme learning machine for intrusion detection in a big data environment. In: Proceedings of the 2014 workshop on artificial intelligent and security workshop. ACM. Xiang, J., et al. (2014). Using extreme learning machine for intrusion detection in a big data environment. In: Proceedings of the 2014 workshop on artificial intelligent and security workshop. ACM.
go back to reference Xu, J., et al. (2015). Regularized minimum class variance extreme learning machine for language recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2015(1), 22.CrossRef Xu, J., et al. (2015). Regularized minimum class variance extreme learning machine for language recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2015(1), 22.CrossRef
go back to reference Yang, Z., Zhang, T., & Zhang, D. (2016). A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training. Cognitive Neurodynamics, 10(1), 73–83.CrossRef Yang, Z., Zhang, T., & Zhang, D. (2016). A novel algorithm with differential evolution and coral reef optimization for extreme learning machine training. Cognitive Neurodynamics, 10(1), 73–83.CrossRef
go back to reference Zazo, R., et al. (2016). Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks. PLoS ONE, 11(1), e0146917.CrossRef Zazo, R., et al. (2016). Language identification in short utterances using long short-term memory (LSTM) recurrent neural networks. PLoS ONE, 11(1), e0146917.CrossRef
Metadata
Title
Spoken language identification based on optimised genetic algorithm–extreme learning machine approach
Authors
Musatafa Abbas Abbood Albadr
Sabrina Tiun
Masri Ayob
Fahad Taha AL-Dhief
Publication date
13-07-2019
Publisher
Springer US
Published in
International Journal of Speech Technology / Issue 3/2019
Print ISSN: 1381-2416
Electronic ISSN: 1572-8110
DOI
https://doi.org/10.1007/s10772-019-09621-w

Other articles of this Issue 3/2019

International Journal of Speech Technology 3/2019 Go to the issue