Skip to main content
Top

2021 | OriginalPaper | Chapter

5. Stability of Nanofluids

Authors : Aditya Kumar, Sudhakar Subudhi

Published in: Thermal Characteristics and Convection in Nanofluids

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nanofluids are the promising smart fluids having advanced thermophysical properties. The earlier chapters have talked about various fascinating facts about the nanofluids. One of the important aspects of the nanofluids is the stability of the nanoparticles. The uniform and long-term suspension is the key and critical feature required in the nanofluids for the industrial applications of these advanced fluids. The chapter summarizes various stability evaluation methods and techniques to enhance the stability of nanofluids. There are number of methods to investigate the stability of the nanofluids. The various types of surfactants and additives are used by the researchers to enhance the stability of the nanofluids. The key factor of using additives is that it is influencing the thermophysical properties and chemical properties of such fluids. The mechanics behind the stability of nanofluids are also discussed in the article.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chakraborty, S., & Panigrahi, P. K. (2020). Stability of nanofluid: a review. Applied Thermal Engineering, 174, 115259.CrossRef Chakraborty, S., & Panigrahi, P. K. (2020). Stability of nanofluid: a review. Applied Thermal Engineering, 174, 115259.CrossRef
3.
go back to reference Chakraborty, S., Sarkar, I., Behera, D. K., Pal, S. K., & Chakraborty, S. (2017). Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technology, 307, 10–24.CrossRef Chakraborty, S., Sarkar, I., Behera, D. K., Pal, S. K., & Chakraborty, S. (2017). Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid. Powder Technology, 307, 10–24.CrossRef
4.
go back to reference Chakraborty, S., et al. (2018). Synthesis of Cu-Al LDH nanofluid and its application in spray cooling heat transfer of a hot steel plate. Powder Technology, 335, 285–300.CrossRef Chakraborty, S., et al. (2018). Synthesis of Cu-Al LDH nanofluid and its application in spray cooling heat transfer of a hot steel plate. Powder Technology, 335, 285–300.CrossRef
5.
go back to reference Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54, 4051–4068.CrossRef Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer, 54, 4051–4068.CrossRef
6.
go back to reference Mostafizur, R. A. A. M. (2015). Thermophysical properties of methanol based nanofluids/Mohd. Mostafizur Rahman. in. Mostafizur, R. A. A. M. (2015). Thermophysical properties of methanol based nanofluids/Mohd. Mostafizur Rahman. in.
7.
go back to reference Huang, B., et al. (2020). Study on the stability of produced water from alkali/surfactant/polymer flooding under the synergetic effect of quartz sand particles and oil displacement agents. Processes, 8. Huang, B., et al. (2020). Study on the stability of produced water from alkali/surfactant/polymer flooding under the synergetic effect of quartz sand particles and oil displacement agents. Processes, 8.
8.
go back to reference Sadeghi, R., Etemad, S. G., Keshavarzi, E., & Haghshenasfard, M. (2015). Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid. Nanofluidics, 18, 1023–1030.CrossRef Sadeghi, R., Etemad, S. G., Keshavarzi, E., & Haghshenasfard, M. (2015). Investigation of alumina nanofluid stability by UV–vis spectrum. Microfluid. Nanofluidics, 18, 1023–1030.CrossRef
9.
go back to reference Li, D., Hong, B., Fang, W., Guo, Y., & Lin, R. (2010). Preparation of well-dispersed silver nanoparticles for oil-based nanofluids. Industrial and Engineering Chemistry Research, 49, 1697–1702.CrossRef Li, D., Hong, B., Fang, W., Guo, Y., & Lin, R. (2010). Preparation of well-dispersed silver nanoparticles for oil-based nanofluids. Industrial and Engineering Chemistry Research, 49, 1697–1702.CrossRef
10.
go back to reference Mahbubul, I. M., Elcioglu, E. B., Saidur, R., & Amalina, M. A. (2017). Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrasonics Sonochemistry, 37, 360–367.CrossRef Mahbubul, I. M., Elcioglu, E. B., Saidur, R., & Amalina, M. A. (2017). Optimization of ultrasonication period for better dispersion and stability of TiO2–water nanofluid. Ultrasonics Sonochemistry, 37, 360–367.CrossRef
11.
go back to reference Nguyen, V. S., Rouxel, D., Hadji, R., Vincent, B., & Fort, Y. (2011). Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrasonics Sonochemistry, 18, 382–388.CrossRef Nguyen, V. S., Rouxel, D., Hadji, R., Vincent, B., & Fort, Y. (2011). Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrasonics Sonochemistry, 18, 382–388.CrossRef
12.
go back to reference Chen, H.-J., & Wen, D. (2011). Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Research Letters, 6, 198.CrossRef Chen, H.-J., & Wen, D. (2011). Ultrasonic-aided fabrication of gold nanofluids. Nanoscale Research Letters, 6, 198.CrossRef
13.
go back to reference Amrollahi, A., Hamidi, A. A., & Rashidi, A. M. (2008). The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology, 19, 315701.CrossRef Amrollahi, A., Hamidi, A. A., & Rashidi, A. M. (2008). The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology, 19, 315701.CrossRef
14.
go back to reference Yin, Z., Zheng, B., & Ai, F. (2013). Sulfonic acid functionalized nano Γ-Al2O3: a new, efficient, and reusable catalyst for synthesis of thioamides. Phosphorus Sulfur Silicon and the Related Elements, 188, 1412–1420.CrossRef Yin, Z., Zheng, B., & Ai, F. (2013). Sulfonic acid functionalized nano Γ-Al2O3: a new, efficient, and reusable catalyst for synthesis of thioamides. Phosphorus Sulfur Silicon and the Related Elements, 188, 1412–1420.CrossRef
15.
go back to reference LEES, B. (1963). Surface tension. Clinical Medicine (Northfield, ll), 70, 527–529. LEES, B. (1963). Surface tension. Clinical Medicine (Northfield, ll), 70, 527–529.
16.
go back to reference Kim, H. J., Lee, S.-H., Lee, J.-H., & Jang, S. P. (2015). Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy, 90, 1290–1297.CrossRef Kim, H. J., Lee, S.-H., Lee, J.-H., & Jang, S. P. (2015). Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy, 90, 1290–1297.CrossRef
17.
go back to reference Choudhary, R. (2015). Study of natural convection heat transfer in Al2O3/Water nanofluids. Indian Institute of Technology Roorkee. Choudhary, R. (2015). Study of natural convection heat transfer in Al2O3/Water nanofluids. Indian Institute of Technology Roorkee.
18.
go back to reference Cacua, K., et al. (2019). Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surfaces A Physicochem. Engineering Aspects, 583, 123960.CrossRef Cacua, K., et al. (2019). Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability. Colloids Surfaces A Physicochem. Engineering Aspects, 583, 123960.CrossRef
19.
go back to reference Mahbubul, I. M., et al. (2014). Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Industrial and Engineering Chemistry Research, 53, 6677–6684.CrossRef Mahbubul, I. M., et al. (2014). Effect of ultrasonication duration on colloidal structure and viscosity of alumina-water nanofluid. Industrial and Engineering Chemistry Research, 53, 6677–6684.CrossRef
Metadata
Title
Stability of Nanofluids
Authors
Aditya Kumar
Sudhakar Subudhi
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4248-4_5

Premium Partners