Skip to main content
Top
Published in: Computational Mechanics 5/2015

01-11-2015 | Original Paper

Stabilized plane and axisymmetric Lobatto finite element models

Authors: Y. C. Hu, K. Y. Sze, Y. X. Zhou

Published in: Computational Mechanics | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488MATHCrossRef Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488MATHCrossRef
2.
go back to reference Maday Y, Meiron D, Patera AT, Rønquist EM (1993) Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J Sci Comput 14:310–337MATHCrossRefMathSciNet Maday Y, Meiron D, Patera AT, Rønquist EM (1993) Analysis of iterative methods for the steady and unsteady Stokes problem: application to spectral element discretizations. SIAM J Sci Comput 14:310–337MATHCrossRefMathSciNet
3.
go back to reference Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88:368–392 Komatitsch D, Vilotte JP (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88:368–392
4.
go back to reference Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sanchez-Sesma FJ (1999) The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139–1164MATHCrossRef Komatitsch D, Vilotte JP, Vai R, Castillo-Covarrubias JM, Sanchez-Sesma FJ (1999) The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems. Int J Numer Methods Eng 45:1139–1164MATHCrossRef
5.
go back to reference Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188:217–233MATHCrossRef Dauksher W, Emery AF (2000) The solution of elastostatic and elastodynamic problems with Chebyshev spectral finite elements. Comput Methods Appl Mech Eng 188:217–233MATHCrossRef
6.
go back to reference Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods: fundamentals in single domains. Springer, Berlin
7.
go back to reference De Basabe JD, Sen MK (2007) Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72:T81–T95CrossRef De Basabe JD, Sen MK (2007) Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72:T81–T95CrossRef
8.
go back to reference Kudela P, Żak A, Krawczuk M, Ostachowicz W (2007) Modelling of wave propagation in composite plates using the time domain spectral element method. J Sound Vib 302:728–745MATHCrossRef Kudela P, Żak A, Krawczuk M, Ostachowicz W (2007) Modelling of wave propagation in composite plates using the time domain spectral element method. J Sound Vib 302:728–745MATHCrossRef
9.
go back to reference Seriani G, Oliveira SP (2008) Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45:729–744MATHCrossRefMathSciNet Seriani G, Oliveira SP (2008) Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45:729–744MATHCrossRefMathSciNet
10.
go back to reference Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41CrossRef Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41CrossRef
11.
go back to reference Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80:1718–1742MATHCrossRefMathSciNet Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Methods Eng 80:1718–1742MATHCrossRefMathSciNet
12.
13.
go back to reference Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333–1336CrossRef Pian THH (1964) Derivation of element stiffness matrices by assumed stress distributions. AIAA J 2:1333–1336CrossRef
14.
go back to reference Lee SW, Rhiu JJ (1986) A new efficient approach to the formulation of mixed finite element models for structural analysis. Int J Numer Methods Eng 23:1629–1641MATHCrossRef Lee SW, Rhiu JJ (1986) A new efficient approach to the formulation of mixed finite element models for structural analysis. Int J Numer Methods Eng 23:1629–1641MATHCrossRef
15.
go back to reference Rhiu JJ, Lee SW, Russell RM (1990) Two higher-order shell finite elements with stabilization matrix. AIAA J 28:1517–1524CrossRef Rhiu JJ, Lee SW, Russell RM (1990) Two higher-order shell finite elements with stabilization matrix. AIAA J 28:1517–1524CrossRef
17.
go back to reference Sze KY (1994) Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes. Comput Methods Appl Mech Eng 119:325–340MATHCrossRef Sze KY (1994) Stabilization schemes for 12-node to 21-node brick elements based on orthogonal and consistently assumed stress modes. Comput Methods Appl Mech Eng 119:325–340MATHCrossRef
18.
go back to reference Sze KY, Yi S, Tay MH (1997) An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int J Numer Methods Eng 40:1839–1856CrossRef Sze KY, Yi S, Tay MH (1997) An explicit hybrid stabilized eighteen-node solid element for thin shell analysis. Int J Numer Methods Eng 40:1839–1856CrossRef
19.
go back to reference Sze KY, Wu D (2011) Transition finite element families for adaptive analysis of axisymmetric elasticity problems. Finite Elem Anal Des 47:360–372CrossRefMathSciNet Sze KY, Wu D (2011) Transition finite element families for adaptive analysis of axisymmetric elasticity problems. Finite Elem Anal Des 47:360–372CrossRefMathSciNet
20.
go back to reference Jog CS, Annabattula R (2006) The development of hybrid axisymmetric elements based on the Hellinger-Reissner variational principle. Int J Numer Methods Eng 65:2279–2291MATHCrossRef Jog CS, Annabattula R (2006) The development of hybrid axisymmetric elements based on the Hellinger-Reissner variational principle. Int J Numer Methods Eng 65:2279–2291MATHCrossRef
21.
go back to reference Malkus DS, Hughes TJR (1978) Mixed finite element methods–reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15:63–81MATHCrossRef Malkus DS, Hughes TJR (1978) Mixed finite element methods–reduced and selective integration techniques: a unification of concepts. Comput Methods Appl Mech Eng 15:63–81MATHCrossRef
22.
go back to reference Brito KD, Sprague MA (2012) Reissner-Mindlin Legendre spectral finite elements with mixed reduced quadrature. Finite Elem Anal Des 58:74–83CrossRefMathSciNet Brito KD, Sprague MA (2012) Reissner-Mindlin Legendre spectral finite elements with mixed reduced quadrature. Finite Elem Anal Des 58:74–83CrossRefMathSciNet
23.
go back to reference Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276MATHCrossRef Belytschko T, Ong JSJ, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276MATHCrossRef
24.
go back to reference Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301MATHCrossRefMathSciNet Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301MATHCrossRefMathSciNet
25.
go back to reference Sze KY, Fan H, Chow CL (1995) Elimination of spurious pressure and kinematic modes in biquadratic nine-node plane element. Int J Numer Methods Eng 38:3911–3932MATHCrossRefMathSciNet Sze KY, Fan H, Chow CL (1995) Elimination of spurious pressure and kinematic modes in biquadratic nine-node plane element. Int J Numer Methods Eng 38:3911–3932MATHCrossRefMathSciNet
26.
go back to reference Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48:79–109MATHCrossRef Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48:79–109MATHCrossRef
27.
go back to reference Gruttmann F, Wagner W (2004) A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element. Int J Numer Methods Eng 61:2273–2295MATHCrossRef Gruttmann F, Wagner W (2004) A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element. Int J Numer Methods Eng 61:2273–2295MATHCrossRef
28.
go back to reference Sze KY, Zheng SJ, Lo SH (2004) A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem Anal Des 40:319–340CrossRef Sze KY, Zheng SJ, Lo SH (2004) A stabilized eighteen-node solid element for hyperelastic analysis of shells. Finite Elem Anal Des 40:319–340CrossRef
29.
go back to reference Liu GH, Sze KY (2010) Axisymmetric quadrilateral elements for large deformation hyperelastic analysis. Int J Mech Mater Des 6:197–207CrossRef Liu GH, Sze KY (2010) Axisymmetric quadrilateral elements for large deformation hyperelastic analysis. Int J Mech Mater Des 6:197–207CrossRef
30.
go back to reference Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MATHCrossRefMathSciNet Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638MATHCrossRefMathSciNet
31.
go back to reference Korelc J, Wriggers P (1996) Consistent gradient formulation for a stable enhanced strain method for large deformations. Eng Comput 13:103–123CrossRef Korelc J, Wriggers P (1996) Consistent gradient formulation for a stable enhanced strain method for large deformations. Eng Comput 13:103–123CrossRef
32.
go back to reference Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759–791MATHCrossRef Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14:759–791MATHCrossRef
33.
go back to reference Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: part I: geometrically linear problems. Comput Struct 75:237–250CrossRef Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: part I: geometrically linear problems. Comput Struct 75:237–250CrossRef
34.
go back to reference Romero I, Bischoff M (2007) Incompatible bubbles: a non-conforming finite element formulation for linear elasticity. Comput Methods Appl Mech Eng 196:1662–1672MATHCrossRefMathSciNet Romero I, Bischoff M (2007) Incompatible bubbles: a non-conforming finite element formulation for linear elasticity. Comput Methods Appl Mech Eng 196:1662–1672MATHCrossRefMathSciNet
35.
go back to reference Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1–27CrossRef Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49:1–27CrossRef
36.
go back to reference Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, New York
37.
go back to reference Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New YorkMATH Szabó BA, Babuška I (1991) Finite element analysis. Wiley, New YorkMATH
38.
go back to reference Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New YorkMATH Timoshenko S, Goodier JN (1970) Theory of elasticity. McGraw-Hill, New YorkMATH
39.
go back to reference Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: part 1. Int J Numer Methods Fluids 1:17–43MATHCrossRefMathSciNet Sani RL, Gresho PM, Lee RL, Griffiths DF (1981) The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: part 1. Int J Numer Methods Fluids 1:17–43MATHCrossRefMathSciNet
40.
go back to reference Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193CrossRef
41.
go back to reference Achenbach JD (1973) Wave propagation in elastic solids. North-Holland, AmsterdamMATH Achenbach JD (1973) Wave propagation in elastic solids. North-Holland, AmsterdamMATH
Metadata
Title
Stabilized plane and axisymmetric Lobatto finite element models
Authors
Y. C. Hu
K. Y. Sze
Y. X. Zhou
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 5/2015
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1207-5

Other articles of this Issue 5/2015

Computational Mechanics 5/2015 Go to the issue