Skip to main content
Top

2007 | OriginalPaper | Chapter

9. Stamping Techniques for Micro- and Nanofabrication

Authors : Etienne Menard, Ph.D., John Rogers, pROF.

Published in: Springer Handbook of Nanotechnology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Soft-lithographic techniques that use rubber stamps and molds provide simple means to generate patterns with lateral dimensions that can be much smaller than one micron and can even extend into the single nanometer regime. These methods rely on the use of soft elastomeric elements typically made out of the polymer poly(dimethylsiloxane). The first section of this chapter presents the fabrication techniques for these elements together with data and experiments that provide insights into the fundamental resolution limits. Next, several representative soft-lithography techniques based on the use of these elements are presented: (i) microcontact printing, which uses molecular ‘inks’ that form self-assembled monolayers, (ii) near- and proximity-field photolithography for producing two- and three-dimensional structures with subwavelength resolution features, and (iii) nano-transfer printing, where soft or hard stamps print single or multiple layers of solid inks with feature sizes down to 100 nm. The chapter concludes with descriptions of some device-level applications that highlight the patterning capabilities and potential commercial uses of these techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
9.1.
go back to reference C. A. Mirkin, J. A. Rogers: Emerging methods for micro- and nanofabrication, MRS Bull. 26, 506–507 (2001)CrossRef C. A. Mirkin, J. A. Rogers: Emerging methods for micro- and nanofabrication, MRS Bull. 26, 506–507 (2001)CrossRef
9.2.
go back to reference H. I. Smith, H. G. Craighead: Nanofabrication, Phys. Today 43, 24–43 (February 1990)CrossRef H. I. Smith, H. G. Craighead: Nanofabrication, Phys. Today 43, 24–43 (February 1990)CrossRef
9.3.
go back to reference W. M. Moreau (Ed.): Semiconductor Lithography: Principles and Materials (Plenum, New York 1988) W. M. Moreau (Ed.): Semiconductor Lithography: Principles and Materials (Plenum, New York 1988)
9.4.
go back to reference S. Matsui, Y. Ochiai: Focused ion beam applications to solid state devices, Nanotechnology 7, 247–258 (1996)CrossRef S. Matsui, Y. Ochiai: Focused ion beam applications to solid state devices, Nanotechnology 7, 247–258 (1996)CrossRef
9.5.
go back to reference J. M. Gibson: Reading and writing with electron beams, Phys. Today 50, 56–61 (1997)CrossRef J. M. Gibson: Reading and writing with electron beams, Phys. Today 50, 56–61 (1997)CrossRef
9.6.
go back to reference L. L. Sohn, R. L. Willett: Fabrication of nanostructures using atomic-force microscope-based lithography, Appl. Phys. Lett. 67, 1552–1554 (1995)CrossRef L. L. Sohn, R. L. Willett: Fabrication of nanostructures using atomic-force microscope-based lithography, Appl. Phys. Lett. 67, 1552–1554 (1995)CrossRef
9.7.
go back to reference E. Betzig, K. Trautman: Near-field optics – microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189–195 (1992)CrossRef E. Betzig, K. Trautman: Near-field optics – microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 257, 189–195 (1992)CrossRef
9.8.
go back to reference A. J. Bard, G. Denault, C. Lee, D. Mandler, D. O. Wipf: Scanning electrochemical microscopy: a new technique for the characterization and modification of surfaces, Acc. Chem. Res. 23, 357 (1990)CrossRef A. J. Bard, G. Denault, C. Lee, D. Mandler, D. O. Wipf: Scanning electrochemical microscopy: a new technique for the characterization and modification of surfaces, Acc. Chem. Res. 23, 357 (1990)CrossRef
9.9.
go back to reference J. A. Stroscio, D. M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)CrossRef J. A. Stroscio, D. M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)CrossRef
9.10.
go back to reference J. Nole: Holographic lithography needs no mask, Laser Focus World 33, 209–212 (1997) J. Nole: Holographic lithography needs no mask, Laser Focus World 33, 209–212 (1997)
9.11.
go back to reference A. N. Broers, A. C. F. Hoole, J. M. Ryan: Electron beam lithography – resolution limits, Microelectron. Eng. 32, 131–142 (1996)CrossRef A. N. Broers, A. C. F. Hoole, J. M. Ryan: Electron beam lithography – resolution limits, Microelectron. Eng. 32, 131–142 (1996)CrossRef
9.12.
go back to reference A. N. Broers, W. Molzen, J. Cuomo, N. Wittels: Electron-beam fabrication of 80 Å metal structures, Appl. Phys. Lett. 29, 596 (1976)CrossRef A. N. Broers, W. Molzen, J. Cuomo, N. Wittels: Electron-beam fabrication of 80 Å metal structures, Appl. Phys. Lett. 29, 596 (1976)CrossRef
9.13.
go back to reference G. D. Aumiller, E. A. Chandross, W. J. Tomlinson, H. P. Weber: Submicrometer resolution replication of relief patterns for integrated optics, J. Appl. Phys. 45, 4557–4562 (1974)CrossRef G. D. Aumiller, E. A. Chandross, W. J. Tomlinson, H. P. Weber: Submicrometer resolution replication of relief patterns for integrated optics, J. Appl. Phys. 45, 4557–4562 (1974)CrossRef
9.14.
go back to reference Y. Xia, J. J. McClelland, R. Gupta, D. Qin, X.-M. Zhao, L. L. Sohn, R. J. Celotta, G. M. Whiteside: Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9, 147–149 (1997)CrossRef Y. Xia, J. J. McClelland, R. Gupta, D. Qin, X.-M. Zhao, L. L. Sohn, R. J. Celotta, G. M. Whiteside: Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9, 147–149 (1997)CrossRef
9.15.
go back to reference T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, H. Janssen: Polymer bonding process for nanolithography, Appl. Phys. Lett. 79, 2246–2248 (2001)CrossRef T. Borzenko, M. Tormen, G. Schmidt, L. W. Molenkamp, H. Janssen: Polymer bonding process for nanolithography, Appl. Phys. Lett. 79, 2246–2248 (2001)CrossRef
9.16.
go back to reference H. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotinka, J. Wang, P. Geil, M. Shim, J. A. Rogers: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4(12), 2467–2471 (2004)CrossRef H. Hua, Y. Sun, A. Gaur, M. A. Meitl, L. Bilhaut, L. Rotinka, J. Wang, P. Geil, M. Shim, J. A. Rogers: Polymer imprint lithography with molecular-scale resolution, Nano Lett. 4(12), 2467–2471 (2004)CrossRef
9.17.
go back to reference A. Kumar, G. M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRef A. Kumar, G. M. Whitesides: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching, Appl. Phys. Lett. 63, 2002–2004 (1993)CrossRef
9.18.
go back to reference Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRef Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRef
9.19.
go back to reference Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides: Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823–1848 (1999)CrossRef Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides: Unconventional methods for fabricating and patterning nanostructures, Chem. Rev. 99, 1823–1848 (1999)CrossRef
9.20.
go back to reference J. A. Rogers, R. J. Jackman, J. L. Wagener, A. M. Vengsarkar, G. M. Whitesides: Using microcontact printing to generate photomasks on the surface of optical fibers: a new method for producing in-fiber gratings, Appl. Phys. Lett. 70, 7–9 (1997)CrossRef J. A. Rogers, R. J. Jackman, J. L. Wagener, A. M. Vengsarkar, G. M. Whitesides: Using microcontact printing to generate photomasks on the surface of optical fibers: a new method for producing in-fiber gratings, Appl. Phys. Lett. 70, 7–9 (1997)CrossRef
9.21.
go back to reference B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, H. Wolf: Printing meets lithography: soft approaches to high-resolution printing, IBM J. Res. Dev. 45, 697–719 (2001)CrossRef B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J. P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, H. Wolf: Printing meets lithography: soft approaches to high-resolution printing, IBM J. Res. Dev. 45, 697–719 (2001)CrossRef
9.22.
go back to reference J. A. Rogers: Rubber stamping for plastic electronics and fiber optics, MRS Bull. 26, 530–534 (2001)CrossRef J. A. Rogers: Rubber stamping for plastic electronics and fiber optics, MRS Bull. 26, 530–534 (2001)CrossRef
9.23.
go back to reference N. B. Larsen, H. Biebuyck, E. Delamarche, B. Michel: Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119, 3017–3026 (1997)CrossRef N. B. Larsen, H. Biebuyck, E. Delamarche, B. Michel: Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119, 3017–3026 (1997)CrossRef
9.24.
go back to reference H. A. Biebuyck, G. M. Whitesides: Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold, Langmuir 10, 2790–2793 (1994)CrossRef H. A. Biebuyck, G. M. Whitesides: Self-organization of organic liquids on patterned self-assembled monolayers of alkanethiolates on gold, Langmuir 10, 2790–2793 (1994)CrossRef
9.25.
go back to reference J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic: Paper-like electronic displays: Large area, rubber stamped plastic sheets of electronics and electrophoretic inks, Proc. Nat. Acad. Sci. USA 98, 4835–4840 (2001)CrossRef J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic: Paper-like electronic displays: Large area, rubber stamped plastic sheets of electronics and electrophoretic inks, Proc. Nat. Acad. Sci. USA 98, 4835–4840 (2001)CrossRef
9.26.
go back to reference J. L. Wilbur, H. A. Biebuyck, J. C. MacDonald, G. M. Whitesides: Scanning force microscopies can image patterned self-assembled monolayers, Langmuir 11, 825–831 (1995)CrossRef J. L. Wilbur, H. A. Biebuyck, J. C. MacDonald, G. M. Whitesides: Scanning force microscopies can image patterned self-assembled monolayers, Langmuir 11, 825–831 (1995)CrossRef
9.27.
go back to reference J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides: Self-assembled monolayers of alkanethiolates on palladium are good etch resists, J. Am. Chem. Soc. 124, 1576–1577 (2002)CrossRef J. C. Love, D. B. Wolfe, M. L. Chabinyc, K. E. Paul, G. M. Whitesides: Self-assembled monolayers of alkanethiolates on palladium are good etch resists, J. Am. Chem. Soc. 124, 1576–1577 (2002)CrossRef
9.28.
go back to reference H. Schmid, B. Michel: Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042–3049 (2000)CrossRef H. Schmid, B. Michel: Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042–3049 (2000)CrossRef
9.29.
go back to reference K. Choi, J. A. Rogers: A photocurable poly(dimethylsiloxane) chemistry for soft lithography in the nanometer regime, J. Am. Chem. Soc. 125, 4060–4061 (2003)CrossRef K. Choi, J. A. Rogers: A photocurable poly(dimethylsiloxane) chemistry for soft lithography in the nanometer regime, J. Am. Chem. Soc. 125, 4060–4061 (2003)CrossRef
9.30.
go back to reference J. A. Rogers, K. E. Paul, G. M. Whitesides: Quantifying distortions in soft lithography, J. Vacuum. Sci. Tech. B 16, 88–97 (1998) J. A. Rogers, K. E. Paul, G. M. Whitesides: Quantifying distortions in soft lithography, J. Vacuum. Sci. Tech. B 16, 88–97 (1998)
9.31.
go back to reference J. Tate, J. A. Rogers, C. D. W. Jones, W. Li, Z. Bao, D. W. Murphy, R. E. Slusher, A. Dodabalapur, H. E. Katz, A. J. Lovinger: Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low voltage organic electronic systems, Langmuir 16, 6054–6060 (2000)CrossRef J. Tate, J. A. Rogers, C. D. W. Jones, W. Li, Z. Bao, D. W. Murphy, R. E. Slusher, A. Dodabalapur, H. E. Katz, A. J. Lovinger: Anodization and microcontact printing on electroless silver: solution-based fabrication procedures for low voltage organic electronic systems, Langmuir 16, 6054–6060 (2000)CrossRef
9.32.
go back to reference Y. Xia, E. Kim, G. M. Whitesides: Microcontact printing of alkanethiols on silver and its application to microfabrication, J. Electrochem. Soc. 143, 1070–1079 (1996)CrossRef Y. Xia, E. Kim, G. M. Whitesides: Microcontact printing of alkanethiols on silver and its application to microfabrication, J. Electrochem. Soc. 143, 1070–1079 (1996)CrossRef
9.33.
go back to reference Y. N. Xia, X. M. Zhao, E. Kim, G. M. Whitesides: A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold, Chem. Mater. 7, 2332–2337 (1995)CrossRef Y. N. Xia, X. M. Zhao, E. Kim, G. M. Whitesides: A selective etching solution for use with patterned self-assembled monolayers of alkanethiolates on gold, Chem. Mater. 7, 2332–2337 (1995)CrossRef
9.34.
go back to reference R. J. Jackman, J. Wilbur, G. M. Whitesides: Fabrication of submicrometer features on curved substrates by microcontact printing, Science 269, 664–666 (1995)CrossRef R. J. Jackman, J. Wilbur, G. M. Whitesides: Fabrication of submicrometer features on curved substrates by microcontact printing, Science 269, 664–666 (1995)CrossRef
9.35.
go back to reference R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss, G. M. Whitesides: Design and fabrication of topologically complex, three-dimensional microstructures, Science 280, 2089–2091 (1998)CrossRef R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss, G. M. Whitesides: Design and fabrication of topologically complex, three-dimensional microstructures, Science 280, 2089–2091 (1998)CrossRef
9.36.
go back to reference J. A. Rogers, R. J. Jackman, G. M. Whitesides: Microcontact printing and electroplating on curved substrates: a new means for producing free-standing three-dimensional microstructures with possible applications ranging from micro-coil springs to coronary stents, Adv. Mater. 9, 475–477 (1997)CrossRef J. A. Rogers, R. J. Jackman, G. M. Whitesides: Microcontact printing and electroplating on curved substrates: a new means for producing free-standing three-dimensional microstructures with possible applications ranging from micro-coil springs to coronary stents, Adv. Mater. 9, 475–477 (1997)CrossRef
9.37.
go back to reference Y.-L. Loo, R. W. Willett, K. Baldwin, J. A. Rogers: Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics, Appl. Phys. Lett. 81, 562–564 (2002)CrossRef Y.-L. Loo, R. W. Willett, K. Baldwin, J. A. Rogers: Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: applications in plastic electronics, Appl. Phys. Lett. 81, 562–564 (2002)CrossRef
9.38.
go back to reference Y.-L. Loo, R. W. Willett, K. Baldwin, J. A. Rogers: Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc. 124, 7654–7655 (2002)CrossRef Y.-L. Loo, R. W. Willett, K. Baldwin, J. A. Rogers: Interfacial chemistries for nanoscale transfer printing, J. Am. Chem. Soc. 124, 7654–7655 (2002)CrossRef
9.39.
go back to reference Y.-L. Loo, J. W. P. Hsu, R. L. Willett, K. W. Baldwin, K. W. West, J. A. Rogers: High-resolution transfer printing on GaAs surfaces using alkane dithiol self-assembled monolayers, J. Vacuum. Sci. Tech. B. 20, 2853–2856 (2002) Y.-L. Loo, J. W. P. Hsu, R. L. Willett, K. W. Baldwin, K. W. West, J. A. Rogers: High-resolution transfer printing on GaAs surfaces using alkane dithiol self-assembled monolayers, J. Vacuum. Sci. Tech. B. 20, 2853–2856 (2002)
9.40.
go back to reference G. S. Ferguson, M. K. Chaudhury, G. B. Sigal, G. M. Whitesides: Contact adhesion of thin gold-films on elastomeric supports – cold welding under ambient conditions, Science 253, 776–778 (1991)CrossRef G. S. Ferguson, M. K. Chaudhury, G. B. Sigal, G. M. Whitesides: Contact adhesion of thin gold-films on elastomeric supports – cold welding under ambient conditions, Science 253, 776–778 (1991)CrossRef
9.41.
go back to reference W. Zhang, S. Y. Chou: Multilevel nanoimprint lithography with submicron alignment over 4 in Si wafers, Appl. Phys. Lett. 79, 845–847 (2001)CrossRef W. Zhang, S. Y. Chou: Multilevel nanoimprint lithography with submicron alignment over 4 in Si wafers, Appl. Phys. Lett. 79, 845–847 (2001)CrossRef
9.42.
go back to reference N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393, 146–149 (1998)CrossRef N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, G. M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393, 146–149 (1998)CrossRef
9.43.
go back to reference E. Menard, L. Bilhaut, J. Zaumseil, J. A. Rogers: Improved surface chemistries, thin film deposition techniques, and stamp designs for nanotransfer printing, Langmuir 20, 6871–6878 (2004)CrossRef E. Menard, L. Bilhaut, J. Zaumseil, J. A. Rogers: Improved surface chemistries, thin film deposition techniques, and stamp designs for nanotransfer printing, Langmuir 20, 6871–6878 (2004)CrossRef
9.44.
go back to reference J. Zaumseil, M. A. Meitl, J. W. P. Hsu, B. Acharya, K. W. Baldwin, Y.-L. Loo, J. A. Rogers: Three-dimensional and multilayer nanostructures formed by nanotransfer printing, Nano. Lett. 3, 1223–1227 (2003)CrossRef J. Zaumseil, M. A. Meitl, J. W. P. Hsu, B. Acharya, K. W. Baldwin, Y.-L. Loo, J. A. Rogers: Three-dimensional and multilayer nanostructures formed by nanotransfer printing, Nano. Lett. 3, 1223–1227 (2003)CrossRef
9.45.
go back to reference Z. Bao, J. A. Rogers, H. E. Katz: Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem. 9, 1895–1904 (1999)CrossRef Z. Bao, J. A. Rogers, H. E. Katz: Printable organic and polymeric semiconducting materials and devices, J. Mater. Chem. 9, 1895–1904 (1999)CrossRef
9.46.
go back to reference J. A. Rogers, Z. Bao, A. Dodabalapur, A. Makhija: Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting, printing and molding, IEEE Electron Dev. Lett. 21, 100–103 (2000)CrossRef J. A. Rogers, Z. Bao, A. Dodabalapur, A. Makhija: Organic smart pixels and complementary inverter circuits formed on plastic substrates by casting, printing and molding, IEEE Electron Dev. Lett. 21, 100–103 (2000)CrossRef
9.47.
go back to reference J. A. Rogers, Z. Bao, A. Makhija: Non-photolithographic fabrication sequence suitable for reel-to-reel production of high performance organic transistors and circuits that incorporate them, Adv. Mater. 11, 741–745 (1999)CrossRef J. A. Rogers, Z. Bao, A. Makhija: Non-photolithographic fabrication sequence suitable for reel-to-reel production of high performance organic transistors and circuits that incorporate them, Adv. Mater. 11, 741–745 (1999)CrossRef
9.48.
go back to reference P. Mach, S. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers: Active matrix displays that use printed organic transistors and polymer dispersed liquid crystals on flexible substrates, Appl. Phys. Lett. 78, 3592–3594 (2001)CrossRef P. Mach, S. Rodriguez, R. Nortrup, P. Wiltzius, J. A. Rogers: Active matrix displays that use printed organic transistors and polymer dispersed liquid crystals on flexible substrates, Appl. Phys. Lett. 78, 3592–3594 (2001)CrossRef
9.49.
go back to reference J. A. Rogers: Toward paperlike displays, Science 291, 1502–1503 (2001)CrossRef J. A. Rogers: Toward paperlike displays, Science 291, 1502–1503 (2001)CrossRef
9.50.
go back to reference Y.-L. Loo, T. Someya, K. W. Baldwin, P. Ho, Z. Bao, A. Dodabalapur, H. E. Katz, J. A. Rogers: Soft, conformable electrical contacts for organic transistors: high resolution circuits by lamination, Proc. Nat. Acad. Sci. USA 99, 10252–10256 (2002)CrossRef Y.-L. Loo, T. Someya, K. W. Baldwin, P. Ho, Z. Bao, A. Dodabalapur, H. E. Katz, J. A. Rogers: Soft, conformable electrical contacts for organic transistors: high resolution circuits by lamination, Proc. Nat. Acad. Sci. USA 99, 10252–10256 (2002)CrossRef
9.51.
go back to reference C. Kim, P. E. Burrows, S. R. Forrest: Micropatterning of organic electronic devices by cold-welding, Science 288, 831–833 (2000)CrossRef C. Kim, P. E. Burrows, S. R. Forrest: Micropatterning of organic electronic devices by cold-welding, Science 288, 831–833 (2000)CrossRef
9.52.
go back to reference C. Kim, M. Shtein, S. R. Forrest: Nanolithography based on patterned metal transfer and its application to organic electronic devices, Appl. Phys. Lett. 80, 4051–4053 (2002)CrossRef C. Kim, M. Shtein, S. R. Forrest: Nanolithography based on patterned metal transfer and its application to organic electronic devices, Appl. Phys. Lett. 80, 4051–4053 (2002)CrossRef
9.53.
go back to reference J. A. Rogers, R. J. Jackman, G. M. Whitesides, D. L. Olson, J. V. Sweedler: Using microcontact printing to fabricate microcoils on capillaries for high resolution 1H-NMR on nanoliter volumes, Appl. Phys. Lett. 70, 2464–2466 (1997)CrossRef J. A. Rogers, R. J. Jackman, G. M. Whitesides, D. L. Olson, J. V. Sweedler: Using microcontact printing to fabricate microcoils on capillaries for high resolution 1H-NMR on nanoliter volumes, Appl. Phys. Lett. 70, 2464–2466 (1997)CrossRef
9.54.
go back to reference J. A. Rogers, R. J. Jackman, G. M. Whitesides: Constructing single and multiple helical microcoils and characterizing their performance as components of microinductors and microelectromagnets, J. Microelectromech. Sys. (JMEMS) 6, 184–192 (1997)CrossRef J. A. Rogers, R. J. Jackman, G. M. Whitesides: Constructing single and multiple helical microcoils and characterizing their performance as components of microinductors and microelectromagnets, J. Microelectromech. Sys. (JMEMS) 6, 184–192 (1997)CrossRef
9.55.
go back to reference R. J. Jackman, J. A. Rogers, G. M. Whitesides: Fabrication and characterization of a concentric, cylindrical microtransformer, IEEE Trans. Magn. 33, 2501–2503 (1997)CrossRef R. J. Jackman, J. A. Rogers, G. M. Whitesides: Fabrication and characterization of a concentric, cylindrical microtransformer, IEEE Trans. Magn. 33, 2501–2503 (1997)CrossRef
9.56.
go back to reference J. A. Rogers, M. Meier, A. Dodabalapur: Using stamping and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers, Appl. Phys. Lett. 73, 1766–1768 (1998)CrossRef J. A. Rogers, M. Meier, A. Dodabalapur: Using stamping and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers, Appl. Phys. Lett. 73, 1766–1768 (1998)CrossRef
9.57.
go back to reference M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu: Organic solid-state lasers with imprinted gratings on plastic substrates, Appl. Phys. Lett. 72, 410–411 (1998)CrossRef M. Berggren, A. Dodabalapur, R. E. Slusher, A. Timko, O. Nalamasu: Organic solid-state lasers with imprinted gratings on plastic substrates, Appl. Phys. Lett. 72, 410–411 (1998)CrossRef
9.58.
go back to reference J. A. Rogers, M. Meier, A. Dodabalapur: Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates, Appl. Phys. Lett. 74, 3257–3259 (1999)CrossRef J. A. Rogers, M. Meier, A. Dodabalapur: Distributed feedback ridge waveguide lasers fabricated by nanoscale printing and molding on non-planar substrates, Appl. Phys. Lett. 74, 3257–3259 (1999)CrossRef
Metadata
Title
Stamping Techniques for Micro- and Nanofabrication
Authors
Etienne Menard, Ph.D.
John Rogers, pROF.
Copyright Year
2007
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-540-29857-1_9

Premium Partners