Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Stand der Technik

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Zusammenfassung

Sofern nicht explizit anders angegeben, handelt es sich in dieser Arbeit stets um endlosfaserverstärkte Kunststoffe und die Abkürzung FVK wird stellvertretend für Strukturen mit diesem Fasertyp verwendet. Des Weiteren werden ausschließlich polymerbasierte Matrixsysteme berücksichtigt und der Fokus auf duroplastische Kunststoffe mit Glasfaserverstärkung (GFK) gelegt.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Reprinted/adapted by permission from Springer Nature: Springer Werkstoffkunde für Ingenieure by E. Roos, K. Maile; Springer-Verlag (2008).
 
2
Reprinted/adapted by permission from Springer Nature: Springer Werkstoffkunde für Ingenieure by AVK – Industrievereinigung Verstärkte Kunststoffe e. V.; Springer Fachmedien Wiesbaden (2013).
 
3
Reprinted/adapted by permission from Springer Nature: Springer Werkstoffkunde für Ingenieure by E. Roos, K. Maile; Springer-Verlag (2008).
 
4
Reprinted/adapted by permission from Springer Nature: Springer Vieweg Das Ingenieurwissen: Werkstoffe by H. Czichos, B. Skrotzki, F.-G. Simon; Springer-Verlag (2014).
 
5
Reprinted from Materials Letters, Vol. 64, Zhou, Y.; Wang, Y.; Xia, Y.; Jeelani, S., Tensile behavior of carbon fiber bundles at different strain rates, Page 247, Elsevier (2010), with permission from Elsevier.
Reprinted from Polymers, Vol. 49, Gerlach, R.; Siviour, C. R.; Petrinic, N.; Wiegand, J., Experimental characterisation and constitutive modelling of RTM-6 resin under impact loading, Page 2733, Elsevier (2008), with permission from Elsevier.
Reprinted from Construction and Building Materials, Vol. 96, Ou, Y.; Zhu, D., Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures, Page 651, Elsevier (2015), with permission from Elsevier.
Reprinted from Composite Structures, Vol. 88, Shokrieh, M. M.; Omidi, M. J., Tension behavior of unidirectional glass/epoxy composites under different strain rates, Page 598, Elsevier (2009), with permission from Elsevier.
 
6
Reprinted from Composites Science and Engineering, Vieille, B; Taleb, L., Fatigue Life Prediction of Composites and Composite Structures, Chapter 6, High-temperature fatigue behavior of woven-ply thermoplastic composites, Page 216, Elsevier (2020), with permission from Elsevier.
Reprinted from Composites Science and Engineering, Naik, N. K., Fatigue in Composites, Chapter 10, Woven-fibre thermoset composites, Page 307, Elsevier (2003), with permission from Elsevier.
Reprinted from Composites Part A: Applied Science and Manufacturing, Vol. 32, Pandita, S. D.; Huysmans, G.; Wevers, M.; Verpoest, I., Tensile fatigue behaviour of glass plain-weave fabric composites in on- and off-axis directions, Page 1537, Elsevier (2001), with permission from Elsevier.
 
7
Reprinted from Composite Materials Series, Talreja, R. (Ed.); Nairn, J. A.; Hu, S., Damage Mechanics of Composite Materials, Chapter 6, Matrix Microcracking, Page 20, Elsevier (1994), with permission from Elsevier.
 
8
Reprinted from Composites Science and Engineering, Naik, N. K., Fatigue in Composites, Chapter 10, Woven-fibre thermoset composites, Page 307, Elsevier (2003), with permission from Elsevier.
Reprinted from Procedia Engineering, Vol. 167, D’Amore, A.; Grassia, L.; Ceparano, A., Correlations between Damage Accumulation and Strength Degradation of Fiber Reinforced Composites Subjected to Cyclic Loading, Page 98, Elsevier (2016), with permission from Elsevier.
Reprinted from Composite Structures, Vol. 156, Reifsnider, K.; Raihan, R. M. D.; Vadlamudi, V., Heterogeneous fracture mechanics for multi-defect analysis, Page 21, Elsevier (2016), with permission from Elsevier.
 
9
Reprinted from Composite Structures, Vol. 156, Reifsnider, K.; Raihan, R. M. D.; Vadlamudi, V., Heterogeneous fracture mechanics for multi-defect analysis, Page 21, Elsevier (2016), with permission from Elsevier.
Reprinted from Composites Science and Engineering, Naik, N. K., Fatigue in Composites, Chapter 10, Woven-fibre thermoset composites, Page 308, Elsevier (2003), with permission from Elsevier.
 
10
Reprinted from Procedia Structural Integrity, Vol. 18, Katunin, A.; Wachla, D., Minimizing self-heating based fatigue degradation in polymeric composites by air cooling, Page 23, Elsevier (2019), with permission from Elsevier.
 
11
Inhalte dieses Kapitels basieren zum Teil auf der studentischen Arbeit [93].
 
12
Reprinted from Composites Science and Technology, Vol. 141, Flore, D.; Wegener, H.; Mayer, H.; Karr, U.; Oetting, C. C., Investigation of the high and very high cycle fatigue behaviour of continuous fibre reinforced plastics by conventional and ultrasonic fatigue testing, Page 135, Elsevier (2017), with permission from Elsevier.
Reprinted/adapted by permission from Springer Nature: Springer Mechanics of Composite Materials, Acceleration of Fatigue Tests of Polymer Composite Materials by Using High-Frequency Loadings by R. Alpinis; Springer-Verlag (2004)
Reprinted from Composites Part B: Engineering, Vol. 165, Jeannin, T.; Gabrion, X.; Ramasso, E.; Placet, V., About the fatigue endurance of unidirectional flax-epoxy composite laminates, Page 695, Elsevier (2019), with permission from Elsevier.
 
13
Inhalte dieses Kapitels basieren zum Teil auf Vorveröffentlichungen [227] [266] und auf den studentischen Arbeiten [115] [192] [234].
 
14
Reprinted from Composites Science and Technology, Vol. 66, Schell, J. S. U.; Renglli, G. H.; van Lenthe, R.; Müller, R.; Ermanni, P., Micro-computed tomography determination of glass fibre reinforced polymer meso-structure, Page 2021, Elsevier (2006), with permission from Elsevier.
 
15
Reprinted from Composites Science and Technology, Vol. 89, Nikishkov, Y.; Airoldi, L.; Makeev, A., Measurement of voids in composites by X-ray Computed Tomography, Page 94, Elsevier (2013), with permission from Elsevier.
Reprinted from Composites Science and Technology, Vol. 89, Schilling, P. J.; Karedla, B. R.; Tatiparthi A. K.; Verges, M. A.; Herrington, P. D., X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites, Page 65, Elsevier (2005), with permission from Elsevier.
Reprinted from Composites Science and Technology, Vol. 72, Sket, F.; Seltzer, R.; Molina- Aldareguía, J. M.; Gonzalez, C.; LLorca, J., Determination of damage micromechanisms and fracture resistance of glass fiber/epoxy cross-ply laminate by means of X-ray computed microtomography, Page 351, Elsevier (2012), with permission from Elsevier.
Reprinted from Composites Science and Technology, Vol. 131, Sisodia, S. M.; Garcea, S.C.; George, A. R.; Fullwood, D. T.; Spearing, S. M.; Gamstedt, E. K., High-resolution computed tomography in resin infused woven carbon fibre composites with voids, Page 15, Elsevier (2016), with permission from Elsevier.
Reprinted from Composites Science and Technology, Vol. 90, Scott, A. E.; Siclair, I.; Spearing, S. M.; Mavrogordato, M. N.; Hepples, W., Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography, Page 148, Elsevier (2014), with permission from Elsevier.
 
16
Reprinted from Composites Science and Technology, Vol. 110, Böhm, R.; Stiller, J.; Behnisch, T.; Zscheyge, M.; Protz, R.; Radloff, S.; Gude, M.; Hufenbach, W., A quantitative comparison of the capabilities of in situ computed tomography and conventional computed tomography for damage analysis of composites, Page 66, Elsevier (2015), with permission from Elsevier.
 
17
Reprinted from Engineering Fracture Mechanics, Vol. 216, Pakdel, H.; Mohammadi, B., Stiffness degradation of composite laminates due to matrix cracking and induced delamination during tension-tension fatigue, Page 6, Elsevier (2019), with permission from Elsevier.
Reprinted from Composites Part B: Engineering, Vol. 65, Quaresimin, M.; Carraro, P. A.; Mikkelsen, L. P.; Lucato, N.; Vivian, P.; Brøndsted, P.; Sørensen, B. F.; Varna, J.; Talreja, R., Reprint of: Damage evolution under cyclic multiaxial stress state: A comparative analysis between glass/epoxy laminates and tubes, Pages 5 and 6, Elsevier (2014), with permission from Elsevier.
 
Metadata
Title
Stand der Technik
Author
Daniel Hülsbusch
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-658-34643-0_2

Premium Partners