Skip to main content
Top

2016 | OriginalPaper | Chapter

Stem Cells Commitment on Graphene-Based Scaffolds

Authors : Maurizio Buggio, Marco Tatullo, Stefano Sivolella, Chiara Gardin, Letizia Ferroni, Eitan Mijiritsky, Adriano Piattelli, Barbara Zavan

Published in: Graphene-based Materials in Health and Environment

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the last years, a rapid development in production, and functionalization of graphene give rise to several products that have shown great potentials in many fields, such as nanoelectronics, energy technology, sensors, and catalysis. In this context we should not forget the biomedical application of graphene that became a new area with outstanding potential. The first study on graphene for biomedical applications has been performed by Dai in 2008 that reported the use of graphene oxide as an efficient nanocarrier for drug delivery. This pioneristic study opened the doors for the use of graphene in widespread biomedical applications such as drug/gene delivery, biological sensing and imaging, antibacterial materials, but also as biocompatible scaffold for cell culture and tissue engineering. The application of graphene-based scaffolds for tissue engineering applications is confirmed by the many exciting and intriguing literature reports over the last few years, that clearly confirm that graphene and its related substrates are excellent platforms for adhesion, proliferation, and differentiation of various cells such as human Mesenchymal stem cells, human neuronal stem cells, and induced pluripotent stem cells. Since most of the papers on this fields are related to in vitro studies, several future in vivo investigations need to be conducted in order to lead to its utilization as implantable tissue engineering material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184CrossRef Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184CrossRef
2.
go back to reference Chandra P, Lee SJ (2015) Synthetic extracellular microenvironment for modulating stem cell behaviors. Biomark Insights 10(Suppl 1):105–116 Chandra P, Lee SJ (2015) Synthetic extracellular microenvironment for modulating stem cell behaviors. Biomark Insights 10(Suppl 1):105–116
3.
go back to reference Martino MM, Brkic S, Bovo E, Burger M, Schaefer DJ, Wolff T, Gürke L, Briquez PS, Larsson HM, Gianni-Barrera R, Hubbell JA, Banfi A (2015) Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front Bioeng Biotechnol 3:45CrossRef Martino MM, Brkic S, Bovo E, Burger M, Schaefer DJ, Wolff T, Gürke L, Briquez PS, Larsson HM, Gianni-Barrera R, Hubbell JA, Banfi A (2015) Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine. Front Bioeng Biotechnol 3:45CrossRef
4.
go back to reference Knothe Tate ML, Detamore M, Capadona JR, Woolley A, Knothe U (2016) Engineering and commercialization of human-device interfaces, from bone to brain. Biomaterials 95:35–46CrossRef Knothe Tate ML, Detamore M, Capadona JR, Woolley A, Knothe U (2016) Engineering and commercialization of human-device interfaces, from bone to brain. Biomaterials 95:35–46CrossRef
5.
go back to reference Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM (2016) Biomaterials for hollow organ tissue engineering. Fibrogenesis Tissue Repair 9:3CrossRef Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM (2016) Biomaterials for hollow organ tissue engineering. Fibrogenesis Tissue Repair 9:3CrossRef
6.
go back to reference Bressan E, Ferroni L, Gardin C, Sbricoli L, Gobbato L, Ludovichetti FS, Tocco I, Carraro A, Piattelli A, Zavan B (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med 12(1):296CrossRef Bressan E, Ferroni L, Gardin C, Sbricoli L, Gobbato L, Ludovichetti FS, Tocco I, Carraro A, Piattelli A, Zavan B (2014) Graphene based scaffolds effects on stem cells commitment. J Transl Med 12(1):296CrossRef
7.
go back to reference Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Özyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678CrossRef Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Özyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678CrossRef
8.
go back to reference Liu Z, Robinson JT, Sun XM et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877CrossRef Liu Z, Robinson JT, Sun XM et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877CrossRef
9.
go back to reference Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294CrossRef Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294CrossRef
10.
go back to reference Xuan Y, Wu YQ, Shen T et al (2008) Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl Phys Lett 92(1):013101–013103CrossRef Xuan Y, Wu YQ, Shen T et al (2008) Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl Phys Lett 92(1):013101–013103CrossRef
11.
go back to reference Hu S, Zeng Y, Yang S, Qin H, Cai H, Wang J (2015) Application of graphene based nanotechnology in stem cells research. J Nanosci Nanotechnol 15(9):6327–6341 (Review)CrossRef Hu S, Zeng Y, Yang S, Qin H, Cai H, Wang J (2015) Application of graphene based nanotechnology in stem cells research. J Nanosci Nanotechnol 15(9):6327–6341 (Review)CrossRef
12.
go back to reference Zavan B, Vindigni V, Gardin C, D’Avella D, Della Puppa A, Abatangelo G, Cortivo R (2010) Neural potential of adipose stem cells. Discov Med 10(50):37–43 (Review) Zavan B, Vindigni V, Gardin C, D’Avella D, Della Puppa A, Abatangelo G, Cortivo R (2010) Neural potential of adipose stem cells. Discov Med 10(50):37–43 (Review)
13.
go back to reference Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B (2013) Nanotechnology to drive stem cell commitment. Nanomedicine 8(3):469–486CrossRef Bressan E, Carraro A, Ferroni L, Gardin C, Sbricoli L, Guazzo R, Stellini E, Roman M, Pinton P, Sivolella S, Zavan B (2013) Nanotechnology to drive stem cell commitment. Nanomedicine 8(3):469–486CrossRef
14.
go back to reference Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z (2015) Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater 20:1–9CrossRef Hao J, Zhang Y, Jing D, Shen Y, Tang G, Huang S, Zhao Z (2015) Mechanobiology of mesenchymal stem cells: perspective into mechanical induction of MSC fate. Acta Biomater 20:1–9CrossRef
15.
go back to reference Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16(3):239–253CrossRef Kfoury Y, Scadden DT (2015) Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell 16(3):239–253CrossRef
16.
go back to reference D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M (2015) Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 13:186CrossRef D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, Osturu S, Catani F, Paolucci P, Horwitz EM, Dominici M (2015) Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med 13:186CrossRef
17.
go back to reference Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge Schipani E, Kronenberg HM (2008) Adult mesenchymal stem cells. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge
18.
go back to reference Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76 (Review)CrossRef Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76 (Review)CrossRef
19.
go back to reference Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231(7):1413–1416CrossRef Caplan AI (2016) MSCs: the sentinel and safe-guards of injury. J Cell Physiol 231(7):1413–1416CrossRef
20.
go back to reference González F, Huangfu D (2016) Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol 5(1):39–65CrossRef González F, Huangfu D (2016) Mechanisms underlying the formation of induced pluripotent stem cells. Wiley Interdiscip Rev Dev Biol 5(1):39–65CrossRef
21.
go back to reference Takahashi K, Yamanaka S (2015) A developmental framework for induced pluripotency. Development 142(19):3274–3285CrossRef Takahashi K, Yamanaka S (2015) A developmental framework for induced pluripotency. Development 142(19):3274–3285CrossRef
22.
go back to reference Raab S, Klingenstein M, Liebau S, Linta L (2014) A Comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391CrossRef Raab S, Klingenstein M, Liebau S, Linta L (2014) A Comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391CrossRef
23.
go back to reference Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) PS cells: a game changer for future medicine. EMBO J 33(5):409–417CrossRef Inoue H, Nagata N, Kurokawa H, Yamanaka S (2014) PS cells: a game changer for future medicine. EMBO J 33(5):409–417CrossRef
24.
go back to reference Fulka J Jr, Fulka H (2007) Somatic cell nuclear transfer (SCNT) in mammals: the cytoplast and its reprogramming activities. Adv Exp Med Biol 591:93–102 (Review)CrossRef Fulka J Jr, Fulka H (2007) Somatic cell nuclear transfer (SCNT) in mammals: the cytoplast and its reprogramming activities. Adv Exp Med Biol 591:93–102 (Review)CrossRef
25.
go back to reference Tweedell KS (2008) New paths to pluripotent stem cells. Curr Stem Cell Res Ther 3(3):151–162CrossRef Tweedell KS (2008) New paths to pluripotent stem cells. Curr Stem Cell Res Ther 3(3):151–162CrossRef
26.
go back to reference Wu M, Chen G, Hu B (2013) Induced pluripotency for translational research. Genom Proteom Bioinform 11(5):288–293CrossRef Wu M, Chen G, Hu B (2013) Induced pluripotency for translational research. Genom Proteom Bioinform 11(5):288–293CrossRef
27.
go back to reference Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533CrossRef Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533CrossRef
28.
29.
go back to reference Wan W, Cao L, Kalionis B, Xia S, Tai X (2015) Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells Int 2015:382530CrossRef Wan W, Cao L, Kalionis B, Xia S, Tai X (2015) Applications of induced pluripotent stem cells in studying the neurodegenerative diseases. Stem Cells Int 2015:382530CrossRef
30.
go back to reference Olariu V, Lövkvist C, Sneppen K (2016) Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 6:25438CrossRef Olariu V, Lövkvist C, Sneppen K (2016) Nanog, Oct4 and Tet1 interplay in establishing pluripotency. Sci Rep 6:25438CrossRef
31.
go back to reference Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193CrossRef Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193CrossRef
32.
go back to reference Liu Z, Skamagki M, Kim K, Zhao R (2015) Canonical MICRORNA activity facilitates but may be dispensable for transcription factor-mediated reprogramming. Stem Cell Rep 5(6):1119–1127CrossRef Liu Z, Skamagki M, Kim K, Zhao R (2015) Canonical MICRORNA activity facilitates but may be dispensable for transcription factor-mediated reprogramming. Stem Cell Rep 5(6):1119–1127CrossRef
33.
go back to reference Porciuncula A, Kumar A, Rodriguez S, Atari M, Araña M, Martin F, Soria B, Prosper F, Verfaillie C, Barajas M (2016) Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells. Differentiation S0301–4681(16):30015–30019. doi:10.1016/j.diff.2016.04.005 Porciuncula A, Kumar A, Rodriguez S, Atari M, Araña M, Martin F, Soria B, Prosper F, Verfaillie C, Barajas M (2016) Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells. Differentiation S0301–4681(16):30015–30019. doi:10.​1016/​j.​diff.​2016.​04.​005
34.
go back to reference Chanana AM, Rhee JW, Wu JC (2016) Human-induced pluripotent stem cell approaches to model inborn and acquired metabolic heart diseases. Curr Opin Cardiol 31(3):266–274CrossRef Chanana AM, Rhee JW, Wu JC (2016) Human-induced pluripotent stem cell approaches to model inborn and acquired metabolic heart diseases. Curr Opin Cardiol 31(3):266–274CrossRef
35.
go back to reference El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y (2016) Tumor-free transplantation of patient-derived induced pluripotent stem cell progeny for customized islet regeneration. Stem Cells Transl Med 5(5):694–702CrossRef El Khatib MM, Ohmine S, Jacobus EJ, Tonne JM, Morsy SG, Holditch SJ, Schreiber CA, Uetsuka K, Fusaki N, Wigle DA, Terzic A, Kudva YC, Ikeda Y (2016) Tumor-free transplantation of patient-derived induced pluripotent stem cell progeny for customized islet regeneration. Stem Cells Transl Med 5(5):694–702CrossRef
36.
go back to reference Di Foggia V, Makwana P, Ali RR, Sowden JC (2016) Induced pluripotent stem cell therapies for degenerative disease of the outer retina: disease modeling and cell replacement. J Ocul Pharmacol Ther 32(5):240–252. doi:10.1089/jop.2015.0143. Epub 2016 Mar 30 Di Foggia V, Makwana P, Ali RR, Sowden JC (2016) Induced pluripotent stem cell therapies for degenerative disease of the outer retina: disease modeling and cell replacement. J Ocul Pharmacol Ther 32(5):240–252. doi:10.​1089/​jop.​2015.​0143. Epub 2016 Mar 30
37.
go back to reference Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, Muñoz Y, Ramos D, Villegas-Perez MP, Zapata MA, Raya A, Ruberte J, Veiga A, Garcia-Arumi J (2016) Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev 3:16010CrossRef Riera M, Fontrodona L, Albert S, Ramirez DM, Seriola A, Salas A, Muñoz Y, Ramos D, Villegas-Perez MP, Zapata MA, Raya A, Ruberte J, Veiga A, Garcia-Arumi J (2016) Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev 3:16010CrossRef
38.
go back to reference Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, El-Badri N, Ghoneim MA (2014) Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed Res Int 2014:832736CrossRef Gabr MM, Zakaria MM, Refaie AF, Khater SM, Ashamallah SA, Ismail AM, El-Badri N, Ghoneim MA (2014) Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols. Biomed Res Int 2014:832736CrossRef
39.
go back to reference Reinhard J, Brösicke N, Theocharidis U, Faissner A (2016) The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol S1357–2725(16):30107–30108. doi: 10.1016/j.biocel.2016.05.002. [Epub ahead of print] Reinhard J, Brösicke N, Theocharidis U, Faissner A (2016) The extracellular matrix niche microenvironment of neural and cancer stem cells in the brain. Int J Biochem Cell Biol S1357–2725(16):30107–30108. doi: 10.​1016/​j.​biocel.​2016.​05.​002. [Epub ahead of print]
40.
go back to reference Belenguer G, Domingo-Muelas A, Ferrón SR, Morante-Redolat JM, Fariñas I (2016) Isolation, culture and analysis of adult subependymal neural stem cells. Differentiation 91(4-5):28–41. doi:10.1016/j.diff.2016.01.005. Epub 2016 Mar 23 Belenguer G, Domingo-Muelas A, Ferrón SR, Morante-Redolat JM, Fariñas I (2016) Isolation, culture and analysis of adult subependymal neural stem cells. Differentiation 91(4-5):28–41. doi:10.​1016/​j.​diff.​2016.​01.​005. Epub 2016 Mar 23
41.
go back to reference Zhao H, Chai Y (2015) Stem cells in teeth and craniofacial bones. J Dent Res 94(11):1495–1501CrossRef Zhao H, Chai Y (2015) Stem cells in teeth and craniofacial bones. J Dent Res 94(11):1495–1501CrossRef
42.
go back to reference Aly LA (2015) Stem cells: sources, and regenerative therapies in dental research and practice. World J Stem Cells 7(7):1047–1053 Aly LA (2015) Stem cells: sources, and regenerative therapies in dental research and practice. World J Stem Cells 7(7):1047–1053
43.
go back to reference Padial-Molina M, O’Valle F, Lanis A, Mesa F, Dohan Ehrenfest DM, Wang HL, Galindo-Moreno P (2015) Clinical application of mesenchymal stem cells and novel supportive therapies for oral bone regeneration. Biomed Res Int 2015:341327CrossRef Padial-Molina M, O’Valle F, Lanis A, Mesa F, Dohan Ehrenfest DM, Wang HL, Galindo-Moreno P (2015) Clinical application of mesenchymal stem cells and novel supportive therapies for oral bone regeneration. Biomed Res Int 2015:341327CrossRef
44.
go back to reference Tatullo M, Marrelli M, Paduano F (2015) The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12(1):72–77CrossRef Tatullo M, Marrelli M, Paduano F (2015) The regenerative medicine in oral and maxillofacial surgery: the most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12(1):72–77CrossRef
45.
go back to reference Liu Y, Hu J, Wang S (2014) Mesenchymal stem cell-mediated treatment of oral diseases. Histol Histopathol 29(8):1007–1015 Liu Y, Hu J, Wang S (2014) Mesenchymal stem cell-mediated treatment of oral diseases. Histol Histopathol 29(8):1007–1015
46.
go back to reference Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry–part II: clinical applications. J Prosthodont Res 56(4):229–248CrossRef Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry–part II: clinical applications. J Prosthodont Res 56(4):229–248CrossRef
47.
go back to reference Dawsonand I, Oreffo ROC (2008) Bridging the regenerationgap:stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 473(2):124–131CrossRef Dawsonand I, Oreffo ROC (2008) Bridging the regenerationgap:stem cells, biomaterials and clinical translation in bone tissue engineering. Arch Biochem Biophys 473(2):124–131CrossRef
48.
go back to reference Morikawa S, Ouchi T, Shibata S, Fujimura T, Kawana H, Okano H, Nakagawa T (2016) Applications of mesenchymal stem cells and neural crest cells in craniofacial skeletal research. Stem Cells Int 2016:2849879CrossRef Morikawa S, Ouchi T, Shibata S, Fujimura T, Kawana H, Okano H, Nakagawa T (2016) Applications of mesenchymal stem cells and neural crest cells in craniofacial skeletal research. Stem Cells Int 2016:2849879CrossRef
49.
go back to reference Fisher JN, Peretti GM, Scotti C (2016) Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int 2016:9352598CrossRef Fisher JN, Peretti GM, Scotti C (2016) Stem cells for bone regeneration: from cell-based therapies to decellularised engineered extracellular matrices. Stem Cells Int 2016:9352598CrossRef
50.
go back to reference Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H (2016) Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int 2016:6180487CrossRef Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H (2016) Prospect of stem cells in bone tissue engineering: a review. Stem Cells Int 2016:6180487CrossRef
51.
go back to reference Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRef Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRef
52.
go back to reference Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef
53.
go back to reference Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:1–12CrossRef Dubey N, Bentini R, Islam I, Cao T, Castro Neto AH, Rosa V (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:1–12CrossRef
54.
go back to reference Crowder SW, Prasai D, Rath R et al (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176CrossRef Crowder SW, Prasai D, Rath R et al (2013) Three-dimensional graphene foams promote osteogenic differentiation of human mesenchymal stem cells. Nanoscale 5(10):4171–4176CrossRef
55.
go back to reference Rosa V, Della Bona A, Cavalcanti BN, Nör JE (2012) Tissue engineering: from research to dental clinics. Dent Mater 28(4):341–348CrossRef Rosa V, Della Bona A, Cavalcanti BN, Nör JE (2012) Tissue engineering: from research to dental clinics. Dent Mater 28(4):341–348CrossRef
56.
go back to reference Qi WY, Yuan W, Yan J, Wang H (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films. J Mater Chem B 2:5461–5467CrossRef Qi WY, Yuan W, Yan J, Wang H (2014) Growth and accelerated differentiation of mesenchymal stem cells on graphene oxide/poly-L-lysine composite films. J Mater Chem B 2:5461–5467CrossRef
57.
go back to reference Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678CrossRef Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678CrossRef
58.
go back to reference Tang LAL, Lee WC, Shi H et al (2012) Highly wrinkled crosslinked graphene oxide membranes for biological and chargestorage applications. Small 8(3):423–431CrossRef Tang LAL, Lee WC, Shi H et al (2012) Highly wrinkled crosslinked graphene oxide membranes for biological and chargestorage applications. Small 8(3):423–431CrossRef
59.
go back to reference Jin G, Li K (2014) The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Mater Sci Eng C Mater Biol Appl 45:671–681CrossRef Jin G, Li K (2014) The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine. Mater Sci Eng C Mater Biol Appl 45:671–681CrossRef
60.
go back to reference Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25(2):168–186CrossRef Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25(2):168–186CrossRef
61.
go back to reference Li M, Liu Q, Jia Z et al (2014) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197CrossRef Li M, Liu Q, Jia Z et al (2014) Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197CrossRef
62.
go back to reference Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional softmaterials. Adv Mater 25(1):13–30CrossRef Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional softmaterials. Adv Mater 25(1):13–30CrossRef
63.
go back to reference Bernhard JC, Vunjak-Novakovic G (2016) Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7:56CrossRef Bernhard JC, Vunjak-Novakovic G (2016) Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7:56CrossRef
64.
go back to reference Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774CrossRef Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774CrossRef
65.
go back to reference Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97(4):514–535CrossRef Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97(4):514–535CrossRef
66.
go back to reference Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202CrossRef Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202CrossRef
67.
go back to reference Jung HS, Lee T, Kwon IK, Kim HS, Hahn SK, Lee CS (2015) Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl Mater Interfaces 7(18):9598–9607CrossRef Jung HS, Lee T, Kwon IK, Kim HS, Hahn SK, Lee CS (2015) Surface modification of multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl Mater Interfaces 7(18):9598–9607CrossRef
68.
go back to reference Shi YY, Li M, Liu Q, Jia ZJ, Xu XC, Cheng Y, Zheng YF (2016) Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med 27(3):48CrossRef Shi YY, Li M, Liu Q, Jia ZJ, Xu XC, Cheng Y, Zheng YF (2016) Electrophoretic deposition of graphene oxide reinforced chitosan-hydroxyapatite nanocomposite coatings on Ti substrate. J Mater Sci Mater Med 27(3):48CrossRef
69.
70.
go back to reference Hsiao YS, Kuo CW, Chen P (2013) Multifunctional graphene-PEDOT microelectrodes for on chip manipulation of human mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656CrossRef Hsiao YS, Kuo CW, Chen P (2013) Multifunctional graphene-PEDOT microelectrodes for on chip manipulation of human mesenchymal stem cells. Adv Funct Mater 23(37):4649–4656CrossRef
71.
go back to reference Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D, Dhar M (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374CrossRef Elkhenany H, Amelse L, Lafont A, Bourdo S, Caldwell M, Neilsen N, Dervishi E, Derek O, Biris AS, Anderson D, Dhar M (2015) Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J Appl Toxicol 35(4):367–374CrossRef
72.
go back to reference Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q (2014) Enhanced osteogenic differentiation of mesenchymal stem cells on poly(l-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res, Part A 103(4):1424–1435CrossRef Duan S, Yang X, Mei F, Tang Y, Li X, Shi Y, Mao J, Zhang H, Cai Q (2014) Enhanced osteogenic differentiation of mesenchymal stem cells on poly(l-lactide) nanofibrous scaffolds containing carbon nanomaterials. J Biomed Mater Res, Part A 103(4):1424–1435CrossRef
73.
go back to reference Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K (2015) Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces 7(5):3237–3252CrossRef Kumar S, Raj S, Kolanthai E, Sood AK, Sampath S, Chatterjee K (2015) Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater Interfaces 7(5):3237–3252CrossRef
74.
go back to reference Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S, Nair SV (2015) Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology 26(16):161001CrossRef Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S, Nair SV (2015) Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology 26(16):161001CrossRef
75.
go back to reference Lyu CQ, Lu JY, Cao CH, Luo D, Fu YX, He YS, Zou DR (2015) Induction of osteogenic differentiation of human adipose-derived stem cells by a novel self-supporting graphene hydrogel film and the possible underlying mechanism. ACS Appl Mater Interfaces 7(36):20245–20254CrossRef Lyu CQ, Lu JY, Cao CH, Luo D, Fu YX, He YS, Zou DR (2015) Induction of osteogenic differentiation of human adipose-derived stem cells by a novel self-supporting graphene hydrogel film and the possible underlying mechanism. ACS Appl Mater Interfaces 7(36):20245–20254CrossRef
76.
go back to reference Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7(11):6331–6339CrossRef Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7(11):6331–6339CrossRef
77.
go back to reference Lee JH, Shin YC, Jin OS, Kang SH, Hwang Y-S, Park J-C, Hong SW, Han DW (2015) Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7(27):11642–11651CrossRef Lee JH, Shin YC, Jin OS, Kang SH, Hwang Y-S, Park J-C, Hong SW, Han DW (2015) Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale 7(27):11642–11651CrossRef
78.
go back to reference Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, Huh JB, Han D-W (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5(November):18833CrossRef Lee JH, Shin YC, Lee S-M, Jin OS, Kang SH, Hong SW, Huh JB, Han D-W (2015) Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci Rep 5(November):18833CrossRef
79.
go back to reference Raucci MR, Giugliano D, Longo A, Zeppetelli S, Carotenuto G, Ambrosio L (2016) Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J Tissue Eng Regen Med. doi:10.1002/term.2119 Raucci MR, Giugliano D, Longo A, Zeppetelli S, Carotenuto G, Ambrosio L (2016) Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J Tissue Eng Regen Med. doi:10.​1002/​term.​2119
80.
go back to reference Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, Almaguer-Flores A, Schwartz Z, Boyan BD (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials 51:69–79CrossRef Olivares-Navarrete R, Rodil SE, Hyzy SL, Dunn GR, Almaguer-Flores A, Schwartz Z, Boyan BD (2015) Role of integrin subunits in mesenchymal stem cell differentiation and osteoblast maturation on graphitic carbon-coated microstructured surfaces. Biomaterials 51:69–79CrossRef
81.
go back to reference Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10(6):R132CrossRef Brun P, Dickinson SC, Zavan B, Cortivo R, Hollander AP, Abatangelo G (2008) Characteristics of repair tissue in second-look and third-look biopsies from patients treated with engineered cartilage: relationship to symptomatology and time after implantation. Arthritis Res Ther 10(6):R132CrossRef
82.
go back to reference Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22CrossRef Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22CrossRef
83.
go back to reference Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2012) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone Curr Opin Neurol 25(5):597–603. doi:10.1097/WCO.0b013e328357f288 Chen C, Bang S, Cho Y, Lee S, Lee I, Zhang S, Noh I (2012) Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone Curr Opin Neurol 25(5):597–603. doi:10.​1097/​WCO.​0b013e328357f288​
84.
go back to reference Should Bernhard JC, Vunjak-Novakovic G (2016) We use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7(1):56. doi:10.1186/s13287-016-0314-3 Should Bernhard JC, Vunjak-Novakovic G (2016) We use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7(1):56. doi:10.​1186/​s13287-016-0314-3
85.
go back to reference Nazempour A, Van Wie BJ (2016) Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng 44(5):1325–1354CrossRef Nazempour A, Van Wie BJ (2016) Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann Biomed Eng 44(5):1325–1354CrossRef
86.
go back to reference Panadero JA, Lanceros-Mendez S, Ribelles JL (2016) Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 33:1–12CrossRef Panadero JA, Lanceros-Mendez S, Ribelles JL (2016) Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 33:1–12CrossRef
87.
go back to reference Lee WC, Lim CH, Su KC, Loh KP, Lim CT (2015) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8):963–969CrossRef Lee WC, Lim CH, Su KC, Loh KP, Lim CT (2015) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11(8):963–969CrossRef
88.
go back to reference Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521CrossRef Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN (2015) Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends. Biomaterials 53:502–521CrossRef
89.
go back to reference Tedesco FS, Cossu G (2012) Stem cell therapies for muscle disorders. Curr Opin Neurol 25:597–603CrossRef Tedesco FS, Cossu G (2012) Stem cell therapies for muscle disorders. Curr Opin Neurol 25:597–603CrossRef
90.
go back to reference Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11(4):213–222CrossRef Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11(4):213–222CrossRef
91.
go back to reference Gentile NE, Stearns KM, Brown EH, Rubin JP, Boninger ML, Dearth CL, Ambrosio F, Badylak SF (2014) Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil 93(11 Suppl 3):S79–S87CrossRef Gentile NE, Stearns KM, Brown EH, Rubin JP, Boninger ML, Dearth CL, Ambrosio F, Badylak SF (2014) Targeted rehabilitation after extracellular matrix scaffold transplantation for the treatment of volumetric muscle loss. Am J Phys Med Rehabil 93(11 Suppl 3):S79–S87CrossRef
92.
go back to reference Cezara CA, Mooneya DJ (2015) Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 84:188–197CrossRef Cezara CA, Mooneya DJ (2015) Biomaterial-based delivery for skeletal muscle repair. Adv Drug Deliv Rev 84:188–197CrossRef
93.
go back to reference Mertens JP, Sugg KB, Lee JD, Larkin LM (2014) Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 9(1):89–100CrossRef Mertens JP, Sugg KB, Lee JD, Larkin LM (2014) Engineering muscle constructs for the creation of functional engineered musculoskeletal tissue. Regen Med 9(1):89–100CrossRef
94.
go back to reference Duffy RM, Feinberg AW (2014) Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(2):178–195CrossRef Duffy RM, Feinberg AW (2014) Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(2):178–195CrossRef
95.
go back to reference Sicari BM, Dearth CL, Badylak SF (2014) Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat Rec 297(1):51–64CrossRef Sicari BM, Dearth CL, Badylak SF (2014) Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury. Anat Rec 297(1):51–64CrossRef
96.
go back to reference Davies BM, Morrey ME, Mouthuy PA, Baboldashti NZ, Hakimi O, Snelling S, Price A, Carr A (2013) Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Regen Med 8(5):613–630CrossRef Davies BM, Morrey ME, Mouthuy PA, Baboldashti NZ, Hakimi O, Snelling S, Price A, Carr A (2013) Repairing damaged tendon and muscle: are mesenchymal stem cells and scaffolds the answer? Regen Med 8(5):613–630CrossRef
97.
go back to reference Zhao C, Andersen H, Ozyilmaz B, Ramaprabhu S, Pastorin G, Ho HK (2015) Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering. Nanoscale 7(43):18239–18249CrossRef Zhao C, Andersen H, Ozyilmaz B, Ramaprabhu S, Pastorin G, Ho HK (2015) Spontaneous and specific myogenic differentiation of human mesenchymal stem cells on polyethylene glycol-linked multi-walled carbon nanotube films for skeletal muscle engineering. Nanoscale 7(43):18239–18249CrossRef
98.
go back to reference Chaudhuri B, Bhadra D, Moroni L, Pramanik K (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1):015009CrossRef Chaudhuri B, Bhadra D, Moroni L, Pramanik K (2015) Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide–polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility. Biofabrication 7(1):015009CrossRef
100.
go back to reference Matsumoto K, Ohnishi K, Sekine T, Ueda H, Yamamoto Y, Kiyotani T, Nakamura T, Endo K, Shimizu Y (2000) Use of a newly developed artificial nerve conduit to assist peripheral nerve regeneration across a long gap in dogs. ASAIO J 46:415–420CrossRef Matsumoto K, Ohnishi K, Sekine T, Ueda H, Yamamoto Y, Kiyotani T, Nakamura T, Endo K, Shimizu Y (2000) Use of a newly developed artificial nerve conduit to assist peripheral nerve regeneration across a long gap in dogs. ASAIO J 46:415–420CrossRef
101.
go back to reference Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRef Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRef
102.
go back to reference Hood B, Levene HB, Levi AD (2009) Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 26:E4CrossRef Hood B, Levene HB, Levi AD (2009) Transplantation of autologous Schwann cells for the repair of segmental peripheral nerve defects. Neurosurg Focus 26:E4CrossRef
103.
go back to reference Tsintou M, Dalamagkas K, Seifalian AM (2015) Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 10:726–742CrossRef Tsintou M, Dalamagkas K, Seifalian AM (2015) Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res 10:726–742CrossRef
104.
go back to reference Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2013) Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:89–115 Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2013) Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol 129:89–115
105.
go back to reference Zavan B, Michelotto L, Lancerotto L, Della Puppa A, D’Avella D, Abatangelo G, Vindigni V, Cortivo R (2010) Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurol Res 32(1):47–54CrossRef Zavan B, Michelotto L, Lancerotto L, Della Puppa A, D’Avella D, Abatangelo G, Vindigni V, Cortivo R (2010) Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurol Res 32(1):47–54CrossRef
106.
go back to reference Gardin C, Piattelli A, Zavan B (2016) Graphene in regenerative medicine: focus on stem cells and neuronal differentiation. Trends Biotechnol 34(6):435–437CrossRef Gardin C, Piattelli A, Zavan B (2016) Graphene in regenerative medicine: focus on stem cells and neuronal differentiation. Trends Biotechnol 34(6):435–437CrossRef
107.
go back to reference Gardin C, Vindigni V, Bressan E, Ferroni L, Nalesso E, Puppa AD, D’Avella D, Lops D, Pinton P, Zavan B (2011) Hyaluronan and fibrin biomaterial as scaffolds for neuronal differentiation of adult stem cells derived from adipose tissue and skin. Int J Mol Sci 12(10):6749–6764CrossRef Gardin C, Vindigni V, Bressan E, Ferroni L, Nalesso E, Puppa AD, D’Avella D, Lops D, Pinton P, Zavan B (2011) Hyaluronan and fibrin biomaterial as scaffolds for neuronal differentiation of adult stem cells derived from adipose tissue and skin. Int J Mol Sci 12(10):6749–6764CrossRef
108.
go back to reference Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680CrossRef Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680CrossRef
109.
go back to reference Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4:1408–1416CrossRef Weaver CL, Cui XT (2015) Directed neural stem cell differentiation with a functionalized graphene oxide nanocomposite. Adv Healthc Mater 4:1408–1416CrossRef
110.
go back to reference Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z (2016) Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 8(4):1897–1904CrossRef Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z (2016) Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 8(4):1897–1904CrossRef
111.
go back to reference Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258CrossRef Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258CrossRef
112.
go back to reference Tonello C, Zavan B, Cortivo R, Brun P, Panfilo S, Abatangelo G (2003) In vitro reconstruction of human dermal equivalent enriched with endothelial cells. Biomaterials 24(7):1205–1211CrossRef Tonello C, Zavan B, Cortivo R, Brun P, Panfilo S, Abatangelo G (2003) In vitro reconstruction of human dermal equivalent enriched with endothelial cells. Biomaterials 24(7):1205–1211CrossRef
113.
go back to reference Papini R (2004) Management of burn injuries of various depths. Br Med J 329:158–160CrossRef Papini R (2004) Management of burn injuries of various depths. Br Med J 329:158–160CrossRef
114.
go back to reference Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33:946–957CrossRef Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G (2007) Bioengineered skin substitutes for the management of burns: a systematic review. Burns 33:946–957CrossRef
115.
go back to reference Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434CrossRef Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434CrossRef
116.
go back to reference Santema TB, Poyck PP, Ubbink DT (2016) Skin grafting and tissue replacement for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 2:CD011255 Santema TB, Poyck PP, Ubbink DT (2016) Skin grafting and tissue replacement for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 2:CD011255
117.
go back to reference Mitsukawa N, Higaki K, Ito N, Muramatsu H, Karube D, Akita S, Kubota Y, Satoh K (2016) Combination treatment of artificial dermis and basic fibroblast growth factor for skin defects: a histopathological examination. Wounds 28(5):158–166 Mitsukawa N, Higaki K, Ito N, Muramatsu H, Karube D, Akita S, Kubota Y, Satoh K (2016) Combination treatment of artificial dermis and basic fibroblast growth factor for skin defects: a histopathological examination. Wounds 28(5):158–166
118.
go back to reference Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, Cortivo R (2005) In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J 19(11):1546–1548 Epub 2005 Jun 21 Tonello C, Vindigni V, Zavan B, Abatangelo S, Abatangelo G, Brun P, Cortivo R (2005) In vitro reconstruction of an endothelialized skin substitute provided with a microcapillary network using biopolymer scaffolds. FASEB J 19(11):1546–1548 Epub 2005 Jun 21
119.
go back to reference Garwood CS, Steinberg JS, Kim PJ (2015) Bioengineered alternative tissues in diabetic wound healing. Clin Podiatr Med Surg 32(1):121–133CrossRef Garwood CS, Steinberg JS, Kim PJ (2015) Bioengineered alternative tissues in diabetic wound healing. Clin Podiatr Med Surg 32(1):121–133CrossRef
120.
go back to reference Figallo E, Flaibani M, Zavan B, Abatangelo G, Elvassore N (2007) Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnol Prog 23(1):210–216CrossRef Figallo E, Flaibani M, Zavan B, Abatangelo G, Elvassore N (2007) Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnol Prog 23(1):210–216CrossRef
121.
go back to reference Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP (2015) Tissue-engineered skin substitutes. Plast Reconstr Surg 136(6):1379–1388CrossRef Nyame TT, Chiang HA, Leavitt T, Ozambela M, Orgill DP (2015) Tissue-engineered skin substitutes. Plast Reconstr Surg 136(6):1379–1388CrossRef
122.
go back to reference Dąbrowska AK, Rotaru GM, Derler S, Spano F, Camenzind M, Annaheim S, Stämpfli R, Schmid M, Rossi RM (2016) Materials used to simulate physical properties of human skin. Skin Res Technol 22(1):3–14CrossRef Dąbrowska AK, Rotaru GM, Derler S, Spano F, Camenzind M, Annaheim S, Stämpfli R, Schmid M, Rossi RM (2016) Materials used to simulate physical properties of human skin. Skin Res Technol 22(1):3–14CrossRef
123.
go back to reference Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK (2015) Burn wound healing and treatment: review and advancements. Crit Care 12(19):243CrossRef Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, Chan RK, Christy RJ, Chung KK (2015) Burn wound healing and treatment: review and advancements. Crit Care 12(19):243CrossRef
124.
go back to reference Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640CrossRef Wang HY, Zhang YQ (2015) Processing silk hydrogel and its applications in biomedical materials. Biotechnol Prog 31(3):630–640CrossRef
125.
go back to reference Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212):941–945CrossRef Sun BK, Siprashvili Z, Khavari PA (2014) Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212):941–945CrossRef
126.
go back to reference Li Z, Wang H, Yang B, Sun Y, Huo R (2015) Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater Sci Eng, C 57:181–188CrossRef Li Z, Wang H, Yang B, Sun Y, Huo R (2015) Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater Sci Eng, C 57:181–188CrossRef
127.
go back to reference Farouz Y, Chen Y, Terzic A, Menasché P (2015) Concise review: growing hearts in the right place: on the design of biomimetic materials for cardiac stem cell differentiation. Stem Cells 33(4):1021–1035CrossRef Farouz Y, Chen Y, Terzic A, Menasché P (2015) Concise review: growing hearts in the right place: on the design of biomimetic materials for cardiac stem cell differentiation. Stem Cells 33(4):1021–1035CrossRef
128.
go back to reference Sun X, Altalhi W, Nunes SS (2016) Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev 96:183–194CrossRef Sun X, Altalhi W, Nunes SS (2016) Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv Drug Deliv Rev 96:183–194CrossRef
129.
go back to reference Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101 Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101
130.
go back to reference Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M (2015) Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 10(3):034004CrossRef Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M (2015) Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 10(3):034004CrossRef
131.
go back to reference Lee T-J, Park S, Bhang SH, Yoon J-K, Jo I, Jeong G-J, Hong BH, Kim B-S (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Biophys Res Commun 452(1):174–180CrossRef Lee T-J, Park S, Bhang SH, Yoon J-K, Jo I, Jeong G-J, Hong BH, Kim B-S (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Biophys Res Commun 452(1):174–180CrossRef
132.
go back to reference Ahmed M, Yildirimer L, Khademhosseini A, Seifalian AM (2012) Nanostructured materials for cardiovascular tissue engineering. J Nanosci Nanotechnol 12(6):4775–4785CrossRef Ahmed M, Yildirimer L, Khademhosseini A, Seifalian AM (2012) Nanostructured materials for cardiovascular tissue engineering. J Nanosci Nanotechnol 12(6):4775–4785CrossRef
133.
go back to reference Martinelli V, Cellot G, Fabbro A, Bosi S, Mestroni L, Ballerini L (2013) Improving cardiac myocytes performance by carbon nanotubes platforms. Front Physiol 4:239CrossRef Martinelli V, Cellot G, Fabbro A, Bosi S, Mestroni L, Ballerini L (2013) Improving cardiac myocytes performance by carbon nanotubes platforms. Front Physiol 4:239CrossRef
134.
go back to reference Sreejit P, Verma RS (2013) Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev 9(2):158–171CrossRef Sreejit P, Verma RS (2013) Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev 9(2):158–171CrossRef
135.
go back to reference Zwi-Dantsis L, Gepstein L (2012) Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 69(19):3285–3299CrossRef Zwi-Dantsis L, Gepstein L (2012) Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 69(19):3285–3299CrossRef
136.
go back to reference Kim T, Kahng YH, Lee T, Lee K, do Kim H (2013) Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cells 36(6):577–582CrossRef Kim T, Kahng YH, Lee T, Lee K, do Kim H (2013) Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol Cells 36(6):577–582CrossRef
Metadata
Title
Stem Cells Commitment on Graphene-Based Scaffolds
Authors
Maurizio Buggio
Marco Tatullo
Stefano Sivolella
Chiara Gardin
Letizia Ferroni
Eitan Mijiritsky
Adriano Piattelli
Barbara Zavan
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-45639-3_4

Premium Partners