Skip to main content
Top
Published in: Experiments in Fluids 2/2021

01-02-2021 | Research Article

Stereoscopic particle image velocimetry of laser energy deposition on a mach 3.4 flow field

Authors: Arastou Pournadali Khamseh, Ramez M. Kiriakos, Edward P. DeMauro

Published in: Experiments in Fluids | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Experiments were performed within Rutgers University’s supersonic wind tunnel to measure the influence of off-axis laser energy deposition on the flow field about an ogive cylinder at a freestream Mach number of 3.4. Perturbation of the flow field was accomplished using an infrared laser source, focused to a point ahead of the ogive cylinder. Stereoscopic particle image velocimetry measurements were performed to quantify the effects of energy deposition on the flow field at discrete time delays following the generation of the spark. The SPIV results showed a measurable change in streamwise velocity downstream of ogive’s shock that appears to be dependent on proximity of the initial spark to the ogive’s surface. In contrast, the spark was shown to have little influence on the vertical velocity component at early times. Data corresponding to later times showed the passage of an induced jet through the flow field. The jet rotated about its axis while passing through the shock structure, in agreement with previous qualitative imaging. These results demonstrate the feasibility of using SPIV to investigate the influence of laser energy deposition on the flow field.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Adelgren R, Yan H, Elliott G, Knight D, Beutner T, Zheltovodov A (2005) Control of edney iv interaction by pulsed laser energy deposition. AIAA J 43(2):256–269CrossRef Adelgren R, Yan H, Elliott G, Knight D, Beutner T, Zheltovodov A (2005) Control of edney iv interaction by pulsed laser energy deposition. AIAA J 43(2):256–269CrossRef
go back to reference Adelgren RG (2002) Localized flow control with energy deposition. PhD thesis, Rutgers, The State University of New Jersey Adelgren RG (2002) Localized flow control with energy deposition. PhD thesis, Rutgers, The State University of New Jersey
go back to reference Anderson KV, Knight DD (2012) Plasma jet for flight control. AIAA J 50(9):1855–1872CrossRef Anderson KV, Knight DD (2012) Plasma jet for flight control. AIAA J 50(9):1855–1872CrossRef
go back to reference Aure R, Jacobs JW (2008) Particle image velocimetry study of the shock-induced single mode Richtmyer-Meshkov instability. Shock Waves 18(3):161–167CrossRef Aure R, Jacobs JW (2008) Particle image velocimetry study of the shock-induced single mode Richtmyer-Meshkov instability. Shock Waves 18(3):161–167CrossRef
go back to reference Bletzinger P, Ganguly BN, Van Wie D, Garscadden A (2005) Plasmas in high speed aerodynamics. J Phys D: Appl Phys 38:R33–R57CrossRef Bletzinger P, Ganguly BN, Van Wie D, Garscadden A (2005) Plasmas in high speed aerodynamics. J Phys D: Appl Phys 38:R33–R57CrossRef
go back to reference Bright A, Tichenor N, Kremeyer K, Wlezien R (2018) Boundary-layer separation control using laser-induced air breakdown. AIAA J 56(4):1472–1482CrossRef Bright A, Tichenor N, Kremeyer K, Wlezien R (2018) Boundary-layer separation control using laser-induced air breakdown. AIAA J 56(4):1472–1482CrossRef
go back to reference Buschbeck M, Bittner N, Halfmann T, Arndt S (2012) Dependence of combustion dynamics in a gasoline engine upon the in-cylinder flow field, determined by high-speed piv. Exp Fluids 53(6):1701–1712CrossRef Buschbeck M, Bittner N, Halfmann T, Arndt S (2012) Dependence of combustion dynamics in a gasoline engine upon the in-cylinder flow field, determined by high-speed piv. Exp Fluids 53(6):1701–1712CrossRef
go back to reference Chen X, Bian B, Shen Z, Lu J, Ni X (2003) Equations of laser-induced plasma shock wave motion in air. Microw Opt Technol Lett 38(1):75–79CrossRef Chen X, Bian B, Shen Z, Lu J, Ni X (2003) Equations of laser-induced plasma shock wave motion in air. Microw Opt Technol Lett 38(1):75–79CrossRef
go back to reference Emerick T, Ali MY, Foster C, Alvi FS, Popkin S (2014) Sparkjet characterizations in quiescient and supersonic flowfields. Exp Fluids 55:1858CrossRef Emerick T, Ali MY, Foster C, Alvi FS, Popkin S (2014) Sparkjet characterizations in quiescient and supersonic flowfields. Exp Fluids 55:1858CrossRef
go back to reference Glumac N, Elliott G (2007) The effect of ambient pressure on laser-induced plasmas in air. Opt Lasers Eng 45(1):27–35CrossRef Glumac N, Elliott G (2007) The effect of ambient pressure on laser-induced plasmas in air. Opt Lasers Eng 45(1):27–35CrossRef
go back to reference Grossman KR, Cybyk BZ, VanWie DM (2003) Sparkjet actuators for flow control. AIAA Paper No 2003-57 Grossman KR, Cybyk BZ, VanWie DM (2003) Sparkjet actuators for flow control. AIAA Paper No 2003-57
go back to reference Iwakawa A, Shoda T, Pham HS, Tamba T, Sasoh A (2016) Suppression of low-frequency shock oscillations over boundary layers by repetitive laser pulse energy deposition. Aerospace 3(2):13CrossRef Iwakawa A, Shoda T, Pham HS, Tamba T, Sasoh A (2016) Suppression of low-frequency shock oscillations over boundary layers by repetitive laser pulse energy deposition. Aerospace 3(2):13CrossRef
go back to reference Kianvashrad N, Knight D (2019) Numerical simulation of laser energy discharge for flight control. J Phys D: Appl Phys 52(49):494005CrossRef Kianvashrad N, Knight D (2019) Numerical simulation of laser energy discharge for flight control. J Phys D: Appl Phys 52(49):494005CrossRef
go back to reference Kianvashrad N, Knight D, Wilkinson SP, Chou A, Horne RA, Herring GC, Beeler GB, Jangda M (2018) Effect of off-body laser discharge on drag reduction of hemisphere cylinder in supersonic flow-part II. AIAA Paper No 2018-1433 Kianvashrad N, Knight D, Wilkinson SP, Chou A, Horne RA, Herring GC, Beeler GB, Jangda M (2018) Effect of off-body laser discharge on drag reduction of hemisphere cylinder in supersonic flow-part II. AIAA Paper No 2018-1433
go back to reference Kim JH, Matsuda A, Sakai T, Sasoh A (2011) Wave drag reduction with acting spike induced by laser-pulse energy deposition. AIAA J 49(9):2076–2078CrossRef Kim JH, Matsuda A, Sakai T, Sasoh A (2011) Wave drag reduction with acting spike induced by laser-pulse energy deposition. AIAA J 49(9):2076–2078CrossRef
go back to reference Knight D (2008) Survey of aerodynamic drag reduction at high speed by energy deposition. J Propul Power 24(6):1153–1167CrossRef Knight D (2008) Survey of aerodynamic drag reduction at high speed by energy deposition. J Propul Power 24(6):1153–1167CrossRef
go back to reference Knight D (2013) A summary of laser and microwave flow control in high-speed flows. Prog Flight Phys 5:125–138CrossRef Knight D (2013) A summary of laser and microwave flow control in high-speed flows. Prog Flight Phys 5:125–138CrossRef
go back to reference Ko HS, Haack SJ, Land HB, Cybyk B, Katz J, Kim HJ (2010) Analysis of flow distribution from high-speed flow actuator using particle image velocimetry and digital speckle tomography. Flow Meas Instrum 21:443–453CrossRef Ko HS, Haack SJ, Land HB, Cybyk B, Katz J, Kim HJ (2010) Analysis of flow distribution from high-speed flow actuator using particle image velocimetry and digital speckle tomography. Flow Meas Instrum 21:443–453CrossRef
go back to reference Kontis K (2014) Development and application of laser-induced energy deposition for flow control of Edney Type IV interactions. Final Report FA8655-12-1-2007, University of Manchester Research Office Kontis K (2014) Development and application of laser-induced energy deposition for flow control of Edney Type IV interactions. Final Report FA8655-12-1-2007, University of Manchester Research Office
go back to reference Kopecek H, Maier H, Reider G, Winter F, Wintner E (2003) Laser ignition of methane-air mixtures at high pressures. Exp Therm Fluid Sci 27(4):499–503CrossRef Kopecek H, Maier H, Reider G, Winter F, Wintner E (2003) Laser ignition of methane-air mixtures at high pressures. Exp Therm Fluid Sci 27(4):499–503CrossRef
go back to reference Kremeyer K (2015a) Energy deposition I: application to revolutionize high speed flight and flow control. AIAA Paper No 2015-3560 Kremeyer K (2015a) Energy deposition I: application to revolutionize high speed flight and flow control. AIAA Paper No 2015-3560
go back to reference Kremeyer K (2015b) Energy deposition II: physical mechanisms underlying techniques to achieve high-speed flow control. AIAA Paper No 2015-3502 Kremeyer K (2015b) Energy deposition II: physical mechanisms underlying techniques to achieve high-speed flow control. AIAA Paper No 2015-3502
go back to reference Lazar E, Elliott G, Glumac N (2008) Control of the shear layer above a supersonic cavity using energy deposition. AIAA J 46(12):2987–2997CrossRef Lazar E, Elliott G, Glumac N (2008) Control of the shear layer above a supersonic cavity using energy deposition. AIAA J 46(12):2987–2997CrossRef
go back to reference Lazar E, Elliott G, Glumac N (2009) Energy deposition applied to a transverse jet in a supersonic crossflow. AIAA Paper No 2009-1534 Lazar E, Elliott G, Glumac N (2009) Energy deposition applied to a transverse jet in a supersonic crossflow. AIAA Paper No 2009-1534
go back to reference Leonov SB (2011) Review of plasma-based methods for high-speed flow control. AIP Conf Proc 1376:498–502CrossRef Leonov SB (2011) Review of plasma-based methods for high-speed flow control. AIP Conf Proc 1376:498–502CrossRef
go back to reference Leonov SB, Yarantsev DA (2008) Near-surface electrical discharge in supersonic airflow: properties and flow control. AIAA J 24(6):1168–1181 Leonov SB, Yarantsev DA (2008) Near-surface electrical discharge in supersonic airflow: properties and flow control. AIAA J 24(6):1168–1181
go back to reference Merriman S, Ploenjes E, Palm P, Adamovich IV (2001) Shock wave control by nonequilibrium plasmas in cold supersonic gas flows. AIAA J 39(8):1547–1552CrossRef Merriman S, Ploenjes E, Palm P, Adamovich IV (2001) Shock wave control by nonequilibrium plasmas in cold supersonic gas flows. AIAA J 39(8):1547–1552CrossRef
go back to reference Narayanaswamy V (2010) Investigation of a pulsed-plasma jet for separation shock/boundary layer interaction control. PhD thesis, The University of Texas at Austin Narayanaswamy V (2010) Investigation of a pulsed-plasma jet for separation shock/boundary layer interaction control. PhD thesis, The University of Texas at Austin
go back to reference Nishihara M, Takashima K, Rich JW, Adamovich IV (2011) Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge. Phys Fluids 23:066101CrossRef Nishihara M, Takashima K, Rich JW, Adamovich IV (2011) Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge. Phys Fluids 23:066101CrossRef
go back to reference Nishihara M, Freund JB, Glumac NG, Elliott GS (2018) Influence of mode-beating pulse on laser-induced plasma. J Phys D: Appl Phys 51:135601CrossRef Nishihara M, Freund JB, Glumac NG, Elliott GS (2018) Influence of mode-beating pulse on laser-induced plasma. J Phys D: Appl Phys 51:135601CrossRef
go back to reference Osuka T, Erdem E, Hasegawa N, Majima R, Tamba T, Yokota S, Sasoh A, Kontis K (2014) Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations. Phys Fluids 26:096103CrossRef Osuka T, Erdem E, Hasegawa N, Majima R, Tamba T, Yokota S, Sasoh A, Kontis K (2014) Laser energy deposition effectiveness on shock-wave boundary-layer interactions over cylinder-flare combinations. Phys Fluids 26:096103CrossRef
go back to reference Panco RB, DeMauro EP (2020) Measurements of a mach 3.4 turbulent boundary layer using stereoscopic particle image velocimetry. Exp Fluids 61(4):107CrossRef Panco RB, DeMauro EP (2020) Measurements of a mach 3.4 turbulent boundary layer using stereoscopic particle image velocimetry. Exp Fluids 61(4):107CrossRef
go back to reference Pham HS, Shoda T, Tamba T, Iwakawa A, Sasoh A (2017) Impacts of laser energy deposition on flow instability over double-cone model. AIAA J 55(9):2992–3000CrossRef Pham HS, Shoda T, Tamba T, Iwakawa A, Sasoh A (2017) Impacts of laser energy deposition on flow instability over double-cone model. AIAA J 55(9):2992–3000CrossRef
go back to reference Russell A, Zare-Behtash H, Kontis K (2016) Joule heating flow control methods for high-speed flows. J Electrost 80:34–68CrossRef Russell A, Zare-Behtash H, Kontis K (2016) Joule heating flow control methods for high-speed flows. J Electrost 80:34–68CrossRef
go back to reference Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P (2004) Development and characterization of plasma actuators for high-speed jet control. Exp Fluids 37(4):577–588CrossRef Samimy M, Adamovich I, Webb B, Kastner J, Hileman J, Keshav S, Palm P (2004) Development and characterization of plasma actuators for high-speed jet control. Exp Fluids 37(4):577–588CrossRef
go back to reference Samimy M, Kim JH, Kastner J, Adamovich I, Utkin Y (2007) Active control of high-speed and high-reynolds-number jets using plasma actuators. J Fluid Mech 578:305–330CrossRef Samimy M, Kim JH, Kastner J, Adamovich I, Utkin Y (2007) Active control of high-speed and high-reynolds-number jets using plasma actuators. J Fluid Mech 578:305–330CrossRef
go back to reference Schülein E, Zheltovodov A, Pimonov E, Loginov M (2010) Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles. J Aerosp Innovat 2(3):165–187CrossRef Schülein E, Zheltovodov A, Pimonov E, Loginov M (2010) Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles. J Aerosp Innovat 2(3):165–187CrossRef
go back to reference Singh A, Little J (2016) Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. AIAA Paper No 2016-0455 Singh A, Little J (2016) Active control of a turbulent mixing layer using a pulsed laser and an ns-DBD plasma actuator. AIAA Paper No 2016-0455
go back to reference Sperber D, Eckel HA, Steimer S, Fasoulas S (2012) Objectives of laser-induced energy deposition for active flow control. Contrib Plasma Phys 52(7):636–643CrossRef Sperber D, Eckel HA, Steimer S, Fasoulas S (2012) Objectives of laser-induced energy deposition for active flow control. Contrib Plasma Phys 52(7):636–643CrossRef
go back to reference Tamba T, Pham HS, Shoda T, Iwakawa A, Sasoh A (2015) Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition. Phys Fluids 27:091704CrossRef Tamba T, Pham HS, Shoda T, Iwakawa A, Sasoh A (2015) Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition. Phys Fluids 27:091704CrossRef
go back to reference Wieneke B (2015) Piv uncertainty quantification from correlation statistics. Measurement Sci Technol 26(7):074002CrossRef Wieneke B (2015) Piv uncertainty quantification from correlation statistics. Measurement Sci Technol 26(7):074002CrossRef
go back to reference Winters C, Wagner JL (2019) Interaction of burst-mode laser-induced-plasma with an overexpanded jet at 5–500 kHz repetition-rate. AIAA Paper No 2019-0835 Winters C, Wagner JL (2019) Interaction of burst-mode laser-induced-plasma with an overexpanded jet at 5–500 kHz repetition-rate. AIAA Paper No 2019-0835
go back to reference Yan H, Adelgren R, Boguszko M, Elliott G, Knight D (2003a) Laser energy deposition in quiescient air. AIAA J 41(10):1988–1995CrossRef Yan H, Adelgren R, Boguszko M, Elliott G, Knight D (2003a) Laser energy deposition in quiescient air. AIAA J 41(10):1988–1995CrossRef
go back to reference Yanji H, Diankai W, Qian L, Jifei Y (2014) Interaction of single-pulse laser energy with bow shock in hypersonic flow. Chin J Aeronaut 27(2):241–247CrossRef Yanji H, Diankai W, Qian L, Jifei Y (2014) Interaction of single-pulse laser energy with bow shock in hypersonic flow. Chin J Aeronaut 27(2):241–247CrossRef
Metadata
Title
Stereoscopic particle image velocimetry of laser energy deposition on a mach 3.4 flow field
Authors
Arastou Pournadali Khamseh
Ramez M. Kiriakos
Edward P. DeMauro
Publication date
01-02-2021
Publisher
Springer Berlin Heidelberg
Published in
Experiments in Fluids / Issue 2/2021
Print ISSN: 0723-4864
Electronic ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-021-03142-6

Other articles of this Issue 2/2021

Experiments in Fluids 2/2021 Go to the issue

Premium Partners