Skip to main content
Top

2019 | OriginalPaper | Chapter

9. Stimuli-Responsive Cellulose-Based Hydrogels

Authors : Lei Miao, Min Zhang, Yuanyuan Tu, Shudong Lin, Jiwen Hu

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stimuli-responsive hydrogels can spontaneously change their physical and chemical properties in response to changes in the external environment, and they have potential applications in numerous fields as demonstrated in many reports. Cellulose is the most abundant polysaccharide in the natural world, and cellulosic polymers have been considered to be outstanding candidates as building blocks for stimuli-responsive hydrogels with great potential applications for absorption, separation, in the biomedical field, as well as other fields. The main purpose of this chapter is to demonstrate the significance of these materials and provide representative examples regarding the combination of stimuli-responsive hydrogels and cellulosic polymers. Inspired by the merits of both cellulose and stimuli-responsive hydrogels, in this chapter, we will also individually discuss some of the superior properties of stimuli-responsive cellulose-based hydrogels relative to a fossil-based hydrogel, including bulk hydrogels, microgels/nanogels, and injectable hydrogels that respond to stimuli such as heat, pH, ionic strength, light, electric field, magnetic fields, or shear, as well as their major applications. Furthermore, the typical strategies for the preparation of hydrogels (i.e., chemical cross-linking and physical cross-linking), as well as the mechanisms that drive the ability of these hydrogels to respond to various stimuli (i.e., heat, pH, light, special chemicals, electric fields, magnetic fields, and shear), will also be briefly presented in this chapter. This chapter might be useful for the development of novel stimuli-responsive cellulose-based hydrogels with high performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113PubMed Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113PubMed
2.
go back to reference Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222 Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222
3.
go back to reference Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interf Sci 168(1–2):247–262 Samchenko Y, Ulberg Z, Korotych O (2011) Multipurpose smart hydrogel systems. Adv Colloid Interf Sci 168(1–2):247–262
4.
go back to reference Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods B 151(1–4):56–64 Rosiak JM, Yoshii F (1999) Hydrogels and their medical applications. Nucl Instrum Methods B 151(1–4):56–64
5.
go back to reference Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R 93:1–49 Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R 93:1–49
7.
go back to reference Galperin A, Long TJ, Ratner BD (2010) Degradable, Thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules 11(10):2583–2592PubMedPubMedCentral Galperin A, Long TJ, Ratner BD (2010) Degradable, Thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules 11(10):2583–2592PubMedPubMedCentral
8.
go back to reference Yue MC, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed 53(10):2654–2657 Yue MC, Hoshino Y, Ohshiro Y, Imamura K, Miura Y (2014) Temperature-responsive microgel films as reversible carbon dioxide absorbents in wet environment. Angew Chem Int Ed 53(10):2654–2657
9.
go back to reference Tokarev I, Minko S (2009) Stimuli-responsive hydrogel thin films. Soft Matter 5(3):511–524 Tokarev I, Minko S (2009) Stimuli-responsive hydrogel thin films. Soft Matter 5(3):511–524
10.
go back to reference Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors Basel 8(1):561–581PubMedPubMedCentral Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJP (2008) Review on hydrogel-based pH sensors and microsensors. Sensors Basel 8(1):561–581PubMedPubMedCentral
11.
go back to reference Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10):1223–1230 Dong L, Jiang H (2007) Autonomous microfluidics with stimuli-responsive hydrogels. Soft Matter 3(10):1223–1230
12.
go back to reference Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun 3:1270–1278PubMedPubMedCentral Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A (2012) Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun 3:1270–1278PubMedPubMedCentral
13.
go back to reference Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Introduction. In: Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 105–107 Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Introduction. In: Comprehensive cellulose chemistry: fundamentals and analytical methods, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 105–107
14.
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494 Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494
15.
go back to reference Kang HL, Liu RG, Huang Y (2013) Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int 62(3):338–344 Kang HL, Liu RG, Huang Y (2013) Cellulose derivatives and graft copolymers as blocks for functional materials. Polym Int 62(3):338–344
16.
go back to reference Hernandez R, Lopez D, Mijangos C (2006) Preparation and characterization of polyacrylic acid-poly(vinyl alcohol)-based interpenetrating hydrogels. J Appl Polym Sci 102(6): 5789–5794 Hernandez R, Lopez D, Mijangos C (2006) Preparation and characterization of polyacrylic acid-poly(vinyl alcohol)-based interpenetrating hydrogels. J Appl Polym Sci 102(6): 5789–5794
17.
go back to reference Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590 Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590
18.
go back to reference Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463 Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463
19.
go back to reference Chang CW, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6(20):5157–5164 Chang CW, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6(20):5157–5164
20.
go back to reference Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12): 1622–1626 Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv Mater 19(12): 1622–1626
21.
go back to reference Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373PubMedCentral Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Materials 2(2):353–373PubMedCentral
22.
go back to reference Grishkewich N, Mohammed N, Tang JT, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45 Grishkewich N, Mohammed N, Tang JT, Tam KC (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45
23.
go back to reference Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290PubMed Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290PubMed
24.
go back to reference Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21(3):456–464PubMed Xu FJ, Zhu Y, Liu FS, Nie J, Ma J, Yang WT (2010) Comb-shaped conjugates comprising hydroxypropyl cellulose backbones and low-molecular-weight poly(N-isopropylacryamide) side chains for smart hydrogels: synthesis, characterization, and biomedical applications. Bioconjug Chem 21(3):456–464PubMed
25.
go back to reference Tan JJ, Kang HL, Liu RG, Wang DQ, Jin X, Li QM, Huang Y (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2(3):672–678 Tan JJ, Kang HL, Liu RG, Wang DQ, Jin X, Li QM, Huang Y (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2(3):672–678
26.
go back to reference Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995PubMed Martson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995PubMed
27.
go back to reference Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558PubMed Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558PubMed
28.
go back to reference Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers Basel 7(5):777–803 Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers Basel 7(5):777–803
29.
go back to reference Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4(10):1861–1905PubMedPubMedCentral Joshi SC (2011) Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials 4(10):1861–1905PubMedPubMedCentral
30.
go back to reference Jing Y, Wu PY (2013) Study on the thermoresponsive two phase transition processes of hydroxypropyl cellulose concentrated aqueous solution: from a microscopic perspective. Cellulose 20(1):67–81 Jing Y, Wu PY (2013) Study on the thermoresponsive two phase transition processes of hydroxypropyl cellulose concentrated aqueous solution: from a microscopic perspective. Cellulose 20(1):67–81
31.
go back to reference Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering: from analysis and modeling to technology applications. InTech, Rijeka, pp 117–150 Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering: from analysis and modeling to technology applications. InTech, Rijeka, pp 117–150
32.
go back to reference Feng XH, Pelton R (2007) Carboxymethyl cellulose: polyvinylamine complex hydrogel swelling. Macromolecules 40(5):1624–1630 Feng XH, Pelton R (2007) Carboxymethyl cellulose: polyvinylamine complex hydrogel swelling. Macromolecules 40(5):1624–1630
33.
go back to reference Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40(5):2254–2266PubMed Chen G, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40(5):2254–2266PubMed
34.
go back to reference Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5(1):488–497PubMed Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5(1):488–497PubMed
35.
go back to reference Luo YF, Peng H, Wu JC, Sun JX, Wang YL (2011) Novel amphoteric pH-sensitive hydrogels derived from ethylenediaminetetraacetic dianhydride, butanediamine and amino-terminated poly(ethylene glycol) design, synthesis and swelling behavior. Eur Polym J 47(1):40–47 Luo YF, Peng H, Wu JC, Sun JX, Wang YL (2011) Novel amphoteric pH-sensitive hydrogels derived from ethylenediaminetetraacetic dianhydride, butanediamine and amino-terminated poly(ethylene glycol) design, synthesis and swelling behavior. Eur Polym J 47(1):40–47
36.
go back to reference Vasylieva N, Barnych B, Meillerd A, Maucler C, Pollegioni L, Lin JS, Barbier D, Marinesco S (2011) Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens Bioelectron 26(10):3993–4000PubMed Vasylieva N, Barnych B, Meillerd A, Maucler C, Pollegioni L, Lin JS, Barbier D, Marinesco S (2011) Covalent enzyme immobilization by poly(ethylene glycol) diglycidyl ether (PEGDE) for microelectrode biosensor preparation. Biosens Bioelectron 26(10):3993–4000PubMed
37.
go back to reference Shu XZ, Liu YC, Luo Y, Roberts MC, Prestwich GD (2002) Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3(6):1304–1311PubMed Shu XZ, Liu YC, Luo Y, Roberts MC, Prestwich GD (2002) Disulfide cross-linked hyaluronan hydrogels. Biomacromolecules 3(6):1304–1311PubMed
38.
go back to reference Karaaslan AM, Tshabalala MA, Buschle-Diller G (2010) Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels: mechanical, swelling and controlled drug release properties. Bioresources 5(2):1036–1054 Karaaslan AM, Tshabalala MA, Buschle-Diller G (2010) Wood hemicellulose/chitosan-based semi-interpenetrating network hydrogels: mechanical, swelling and controlled drug release properties. Bioresources 5(2):1036–1054
39.
go back to reference Miao L, Hu JW, Lu MG, Tu YY, Chen X, Li YW, Lin SD, Li F, Hu SY (2016) Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL). Carbohydr Polym 137:433–440PubMed Miao L, Hu JW, Lu MG, Tu YY, Chen X, Li YW, Lin SD, Li F, Hu SY (2016) Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL). Carbohydr Polym 137:433–440PubMed
40.
go back to reference Lin CC, Raza A, Shih H (2011) PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32(36):9685–9695PubMedPubMedCentral Lin CC, Raza A, Shih H (2011) PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Biomaterials 32(36):9685–9695PubMedPubMedCentral
41.
go back to reference Zhang QL, Hoogenboom R (2015) Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog Polym Sci 48:122–142 Zhang QL, Hoogenboom R (2015) Polymers with upper critical solution temperature behavior in alcohol/water solvent mixtures. Prog Polym Sci 48:122–142
42.
go back to reference Seuring J, Agarwal S (2012) Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 33(22):1898–1920PubMed Seuring J, Agarwal S (2012) Polymers with upper critical solution temperature in aqueous solution. Macromol Rapid Commun 33(22):1898–1920PubMed
43.
go back to reference Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (UCST)? Polym Chem 8(1):220–232 Niskanen J, Tenhu H (2017) How to manipulate the upper critical solution temperature (UCST)? Polym Chem 8(1):220–232
44.
go back to reference Schild HG (1992) Poly (N-isopropylacrylamide) – experiment, theory and application. Prog Polym Sci 17(2):163–249 Schild HG (1992) Poly (N-isopropylacrylamide) – experiment, theory and application. Prog Polym Sci 17(2):163–249
45.
go back to reference Kawatani R, Nishiyama Y, Kamikubo H, Kakiuchi K, Ajiro H (2017) Aggregation control by multi-stimuli-responsive poly(N-vinylamide) derivatives in aqueous system. Nanoscale Res Lett 12:1–6 Kawatani R, Nishiyama Y, Kamikubo H, Kakiuchi K, Ajiro H (2017) Aggregation control by multi-stimuli-responsive poly(N-vinylamide) derivatives in aqueous system. Nanoscale Res Lett 12:1–6
46.
go back to reference Pastorczak M, Dominguez-Espinosa G, Okrasa L, Pyda M, Kozanecki M, Kadlubowski S, Rosiak JM, Ulanski J (2014) Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water. Colloid Polym Sci 292(8):1775–1784PubMedPubMedCentral Pastorczak M, Dominguez-Espinosa G, Okrasa L, Pyda M, Kozanecki M, Kadlubowski S, Rosiak JM, Ulanski J (2014) Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water-molecular interactions and states of water. Colloid Polym Sci 292(8):1775–1784PubMedPubMedCentral
47.
go back to reference Liang X, Kozlovskaya V, Chen Y, Zavgorodnya O, Kharlampieva E (2012) Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules. Chem Mater 24(19):3707–3719PubMedPubMedCentral Liang X, Kozlovskaya V, Chen Y, Zavgorodnya O, Kharlampieva E (2012) Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules. Chem Mater 24(19):3707–3719PubMedPubMedCentral
48.
go back to reference Liu Y, Lu WL, Wang HC, Zhang X, Zhang H, Wang XQ, Zhou TY, Zhang Q (2007) Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic (R) F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 117(3):387–395PubMed Liu Y, Lu WL, Wang HC, Zhang X, Zhang H, Wang XQ, Zhou TY, Zhang Q (2007) Controlled delivery of recombinant hirudin based on thermo-sensitive Pluronic (R) F127 hydrogel for subcutaneous administration: in vitro and in vivo characterization. J Control Release 117(3):387–395PubMed
49.
go back to reference Boustta M, Colombo PE, Lenglet S, Poujol S, Vert M (2014) Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release 174:1–6PubMed Boustta M, Colombo PE, Lenglet S, Poujol S, Vert M (2014) Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. J Control Release 174:1–6PubMed
50.
go back to reference Willcock H, Lu A, Hansell CF, Chapman E, Collins IR, O’Reilly RK (2014) One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polym Chem 5(3):1023–1030 Willcock H, Lu A, Hansell CF, Chapman E, Collins IR, O’Reilly RK (2014) One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polym Chem 5(3):1023–1030
51.
go back to reference Mary P, Bendejacq DD, Labeau MP, Dupuis P (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 111(27):7767–7777PubMed Mary P, Bendejacq DD, Labeau MP, Dupuis P (2007) Reconciling low- and high-salt solution behavior of sulfobetaine polyzwitterions. J Phys Chem B 111(27):7767–7777PubMed
52.
go back to reference Seunng J, Agarwal S (2012) First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 45(9):3910–3918 Seunng J, Agarwal S (2012) First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 45(9):3910–3918
53.
go back to reference Khare AR, Peppas NA, Massimo G, Colombo P (1992) Measurement of the swelling force in ionic polymeric networks.1. Effect of Ph and ionic content. J Control Release 22(3):239–244 Khare AR, Peppas NA, Massimo G, Colombo P (1992) Measurement of the swelling force in ionic polymeric networks.1. Effect of Ph and ionic content. J Control Release 22(3):239–244
54.
go back to reference Akar E, Altinisik A, Seki Y (2012) Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90(4): 1634–1641PubMed Akar E, Altinisik A, Seki Y (2012) Preparation of pH- and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr Polym 90(4): 1634–1641PubMed
55.
go back to reference Liu SY, Armes SP (2001) The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. J Am Chem Soc 123(40):9910–9911PubMed Liu SY, Armes SP (2001) The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. J Am Chem Soc 123(40):9910–9911PubMed
56.
go back to reference Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Muller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 40(23):8361–8366 Plamper FA, Ruppel M, Schmalz A, Borisov O, Ballauff M, Muller AHE (2007) Tuning the thermoresponsive properties of weak polyelectrolytes: aqueous solutions of star-shaped and linear poly(N,N-dimethylaminoethyl methacrylate). Macromolecules 40(23):8361–8366
57.
go back to reference Fisher OZ, Peppas NA (2009) Polybasic Nanomatrices prepared by UV-initiated photopolymerization. Macromolecules 42(9):3391–3398PubMedPubMedCentral Fisher OZ, Peppas NA (2009) Polybasic Nanomatrices prepared by UV-initiated photopolymerization. Macromolecules 42(9):3391–3398PubMedPubMedCentral
58.
go back to reference Tomer R, Florence AT (1993) Photo-responsive hydrogels for potential responsive release applications. Int J Pharm 99(2–3):R5–R8 Tomer R, Florence AT (1993) Photo-responsive hydrogels for potential responsive release applications. Int J Pharm 99(2–3):R5–R8
59.
go back to reference Merino E, Ribagorda M (2012) Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090PubMedPubMedCentral Merino E, Ribagorda M (2012) Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J Org Chem 8:1071–1090PubMedPubMedCentral
60.
go back to reference Barrett CJ, Mamiya JI, Yager KG, Ikeda T (2007) Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3(10):1249–1261 Barrett CJ, Mamiya JI, Yager KG, Ikeda T (2007) Photo-mechanical effects in azobenzene-containing soft materials. Soft Matter 3(10):1249–1261
61.
go back to reference Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49(41):7461–7464 Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A (2010) Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed 49(41):7461–7464
62.
go back to reference Sugiura S, Szilagyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, Zrinyi M, Kanamori T (2009) On-demand microfluidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip 9(2):196–198PubMed Sugiura S, Szilagyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, Zrinyi M, Kanamori T (2009) On-demand microfluidic control by micropatterned light irradiation of a photoresponsive hydrogel sheet. Lab Chip 9(2):196–198PubMed
63.
go back to reference Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132(28):9540–9542PubMedPubMedCentral Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132(28):9540–9542PubMedPubMedCentral
64.
go back to reference He J, Tremblay L, Lacelle S, Zhao Y (2011) Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7(6):2380–2386 He J, Tremblay L, Lacelle S, Zhao Y (2011) Preparation of polymer single chain nanoparticles using intramolecular photodimerization of coumarin. Soft Matter 7(6):2380–2386
65.
go back to reference Zheng YJ, Mieie M, Mello SV, Mabrouki M, Andreopoulos FM, Konka V, Pham SM, Leblanc RM (2002) PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35(13):5228–5234 Zheng YJ, Mieie M, Mello SV, Mabrouki M, Andreopoulos FM, Konka V, Pham SM, Leblanc RM (2002) PEG-based hydrogel synthesis via the photodimerization of anthracene groups. Macromolecules 35(13):5228–5234
66.
go back to reference Wu Q, Wang L, Yu HJ, Wang JJ, Chen ZF (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875PubMed Wu Q, Wang L, Yu HJ, Wang JJ, Chen ZF (2011) Organization of glucose-responsive systems and their properties. Chem Rev 111(12):7855–7875PubMed
67.
go back to reference Li PF, Xie R, Fan H, Ju XJ, Chen YC, Meng T, Chu LY (2012) Regulation of critical ethanol response concentrations of ethanol-responsive smart gating membranes. Ind Eng Chem Res 51(28):9554–9563 Li PF, Xie R, Fan H, Ju XJ, Chen YC, Meng T, Chu LY (2012) Regulation of critical ethanol response concentrations of ethanol-responsive smart gating membranes. Ind Eng Chem Res 51(28):9554–9563
68.
go back to reference Shang J, Shao ZZ, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9(4):1208–1213PubMed Shang J, Shao ZZ, Chen X (2008) Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel. Biomacromolecules 9(4):1208–1213PubMed
69.
go back to reference Li L, Hsieh YL (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly(acrylic acid)/poly(vinyl alcohol). Nanotechnology 16(12):2852–2860 Li L, Hsieh YL (2005) Ultra-fine polyelectrolyte hydrogel fibres from poly(acrylic acid)/poly(vinyl alcohol). Nanotechnology 16(12):2852–2860
70.
go back to reference Aulisa L, Dong H, Hartgerink JD (2009) Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10(9): 2694–2698PubMed Aulisa L, Dong H, Hartgerink JD (2009) Self-assembly of multidomain peptides: sequence variation allows control over cross-linking and viscoelasticity. Biomacromolecules 10(9): 2694–2698PubMed
71.
go back to reference Nzihou A, Attias L, Sharrock P, Ricard A (1998) A rheological, thermal and mechanical study of bone cement – from a suspension to a solid biomaterial. Powder Technol 99(1):60–69 Nzihou A, Attias L, Sharrock P, Ricard A (1998) A rheological, thermal and mechanical study of bone cement – from a suspension to a solid biomaterial. Powder Technol 99(1):60–69
72.
go back to reference Li YH, Huang GY, Zhang XH, Li BQ, Chen YM, Lu TL, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672 Li YH, Huang GY, Zhang XH, Li BQ, Chen YM, Lu TL, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23(6):660–672
73.
go back to reference Zhao XH, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108(1):67–72PubMed Zhao XH, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci USA 108(1):67–72PubMed
74.
go back to reference Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978PubMed Liu TY, Hu SH, Liu TY, Liu DM, Chen SY (2006) Magnetic-sensitive behavior of intelligent ferrogels for controlled release of drug. Langmuir 22(14):5974–5978PubMed
75.
go back to reference Mehmood N, Hariz A, Fitridge R, Voelcker NH (2014) Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res Part B 102(4): 885–895 Mehmood N, Hariz A, Fitridge R, Voelcker NH (2014) Applications of modern sensors and wireless technology in effective wound management. J Biomed Mater Res Part B 102(4): 885–895
76.
go back to reference Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound Healing: a review. J Pharm Sci 104(11):3653–3680PubMed Boateng J, Catanzano O (2015) Advanced therapeutic dressings for effective wound Healing: a review. J Pharm Sci 104(11):3653–3680PubMed
77.
go back to reference Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337PubMed Jayakumar R, Prabaharan M, Kumar PTS, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337PubMed
78.
go back to reference Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL (2008) Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules 9(8):2265–2275PubMed Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL (2008) Biocompatible wound dressings based on chemically degradable triblock copolymer hydrogels. Biomacromolecules 9(8):2265–2275PubMed
79.
go back to reference Zubik K, Singhsa P, Wang YA, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers Basel 9(4):119–136 Zubik K, Singhsa P, Wang YA, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers Basel 9(4):119–136
80.
go back to reference Jiang Q, Zhou W, Wang J, Tang RP, Zhang D, Wang X (2016) Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. Int J Biol Macromol 91:85–91PubMed Jiang Q, Zhou W, Wang J, Tang RP, Zhang D, Wang X (2016) Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing. Int J Biol Macromol 91:85–91PubMed
81.
go back to reference Barud HGD, da Silva RR, Barud HD, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB, Ribeiro SJL (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420 Barud HGD, da Silva RR, Barud HD, Tercjak A, Gutierrez J, Lustri WR, de Oliveira OB, Ribeiro SJL (2016) A multipurpose natural and renewable polymer in medical applications: bacterial cellulose. Carbohydr Polym 153:406–420
82.
go back to reference Antimisiaris SG, Mourtas S (2015) Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev 92:123–145PubMed Antimisiaris SG, Mourtas S (2015) Recent advances on anti-HIV vaginal delivery systems development. Adv Drug Deliv Rev 92:123–145PubMed
83.
go back to reference Krishnan S, Dunbar MS, Minnis AM, Medlin CA, Gerdts CE, Padian NS (2008) Poverty, gender inequities, and women’s risk of human immunodeficiency virus/AIDS. Ann N Y Acad Sci 1136:101–110PubMed Krishnan S, Dunbar MS, Minnis AM, Medlin CA, Gerdts CE, Padian NS (2008) Poverty, gender inequities, and women’s risk of human immunodeficiency virus/AIDS. Ann N Y Acad Sci 1136:101–110PubMed
84.
go back to reference Li N, Yu MH, Deng LD, Yang J, Dong AJ (2012) Thermosensitive hydrogel of hydrophobically-modified methylcellulose for intravaginal drug delivery. J Mater Sci Mater Med 23(8):1913–1919PubMed Li N, Yu MH, Deng LD, Yang J, Dong AJ (2012) Thermosensitive hydrogel of hydrophobically-modified methylcellulose for intravaginal drug delivery. J Mater Sci Mater Med 23(8):1913–1919PubMed
85.
go back to reference Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, Ponchel G (2010) Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm 76(2):296–303PubMed Aka-Any-Grah A, Bouchemal K, Koffi A, Agnely F, Zhang M, Djabourov M, Ponchel G (2010) Formulation of mucoadhesive vaginal hydrogels insensitive to dilution with vaginal fluids. Eur J Pharm Biopharm 76(2):296–303PubMed
86.
go back to reference Soliman GM, Fetih G, Abbas AM (2017) Thermosensitive bioadhesive gels for the vaginal delivery of sildenafil citrate: in vitro characterization and clinical evaluation in women using clomiphene citrate for induction of ovulation. Drug Dev Ind Pharm 43(3):399–408PubMed Soliman GM, Fetih G, Abbas AM (2017) Thermosensitive bioadhesive gels for the vaginal delivery of sildenafil citrate: in vitro characterization and clinical evaluation in women using clomiphene citrate for induction of ovulation. Drug Dev Ind Pharm 43(3):399–408PubMed
87.
go back to reference Gupta KM, Barnes SR, Tangaro RA, Roberts MC, Owen DH, Katz DF, Kiser PF (2007) Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J Pharm Sci 96(3):670–681PubMed Gupta KM, Barnes SR, Tangaro RA, Roberts MC, Owen DH, Katz DF, Kiser PF (2007) Temperature and pH sensitive hydrogels: an approach towards smart semen-triggered vaginal microbicidal vehicles. J Pharm Sci 96(3):670–681PubMed
88.
go back to reference Hollister SJ (2006) Porous scaffold design for tissue engineering (vol 4, pg 518, 2005). Nat Mater 5(7):590–590 Hollister SJ (2006) Porous scaffold design for tissue engineering (vol 4, pg 518, 2005). Nat Mater 5(7):590–590
89.
go back to reference Hoo SP, Loh QL, Yue ZL, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1(24):3107–3117 Hoo SP, Loh QL, Yue ZL, Fu J, Tan TTY, Choong C, Chan PPY (2013) Preparation of a soft and interconnected macroporous hydroxypropyl cellulose methacrylate scaffold for adipose tissue engineering. J Mater Chem B 1(24):3107–3117
90.
go back to reference Tang YF, Wang XY, Li Y, Lei M, Du YM, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82(3):833–841 Tang YF, Wang XY, Li Y, Lei M, Du YM, Kennedy JF, Knill CJ (2010) Production and characterisation of novel injectable chitosan/methylcellulose/salt blend hydrogels with potential application as tissue engineering scaffolds. Carbohydr Polym 82(3):833–841
91.
go back to reference Yue ZL, Wen F, Gao SJ, Ang MY, Pallathadka PK, Liu LH, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31(32):8141–8152PubMed Yue ZL, Wen F, Gao SJ, Ang MY, Pallathadka PK, Liu LH, Yu H (2010) Preparation of three-dimensional interconnected macroporous cellulosic hydrogels for soft tissue engineering. Biomaterials 31(32):8141–8152PubMed
92.
go back to reference Shimada N, Nakayama M, Kano A, Maruyama A (2013) Design of UCST polymers for chilling capture of proteins. Biomacromolecules 14(5):1452–1457PubMed Shimada N, Nakayama M, Kano A, Maruyama A (2013) Design of UCST polymers for chilling capture of proteins. Biomacromolecules 14(5):1452–1457PubMed
93.
go back to reference Wang QF, Li SM, Wang ZY, Liu HZ, Li CJ (2009) Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 111(3): 1417–1425 Wang QF, Li SM, Wang ZY, Liu HZ, Li CJ (2009) Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J Appl Polym Sci 111(3): 1417–1425
94.
go back to reference Zhang GW, Wang Y, Liu GJ (2016) Poly(3-imidazolyl-2-hydroxypropyl methacrylate) – a new polymer with a tunable upper critical solution temperature in water. Polym Chem 7(43): 6645–6654 Zhang GW, Wang Y, Liu GJ (2016) Poly(3-imidazolyl-2-hydroxypropyl methacrylate) – a new polymer with a tunable upper critical solution temperature in water. Polym Chem 7(43): 6645–6654
95.
go back to reference Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMed Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670PubMed
96.
go back to reference Omidian H, Park K (2008) Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 18(2):83–93 Omidian H, Park K (2008) Swelling agents and devices in oral drug delivery. J Drug Deliv Sci Technol 18(2):83–93
97.
go back to reference Ichikawa S, Iwamoto S, Watanabe J (2005) Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotech Bioch 69(9):1637–1642 Ichikawa S, Iwamoto S, Watanabe J (2005) Formation of biocompatible nanoparticles by self-assembly of enzymatic hydrolysates of chitosan and carboxymethyl cellulose. Biosci Biotech Bioch 69(9):1637–1642
98.
go back to reference Abeer MM, Amin MCIM, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061PubMed Abeer MM, Amin MCIM, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66(8):1047–1061PubMed
99.
go back to reference Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119PubMed Swamy BY, Yun YS (2015) In vitro release of metformin from iron (III) cross-linked alginate-carboxymethyl cellulose hydrogel beads. Int J Biol Macromol 77:114–119PubMed
100.
go back to reference Gunathilake TMSU, Ching YC, Chuah CH (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers Basel 9(2):64–83 Gunathilake TMSU, Ching YC, Chuah CH (2017) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers Basel 9(2):64–83
101.
go back to reference Rodriguez R, Alvarez-Lorenzo C, Concheiro A (2003) Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J Control Release 86(2–3):253–265PubMed Rodriguez R, Alvarez-Lorenzo C, Concheiro A (2003) Cationic cellulose hydrogels: kinetics of the cross-linking process and characterization as pH-/ion-sensitive drug delivery systems. J Control Release 86(2–3):253–265PubMed
102.
go back to reference Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130PubMed Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130PubMed
103.
go back to reference Mu B, Wang A (2016) Adsorption of dyes onto palygorskite and its composites: a review. J Environ Chem Eng 4(1):1274–1294 Mu B, Wang A (2016) Adsorption of dyes onto palygorskite and its composites: a review. J Environ Chem Eng 4(1):1274–1294
104.
go back to reference Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085PubMed Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085PubMed
105.
go back to reference Lin QW, Gao MF, Chang JL, Ma HZ (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionicdyes. Carbohydr Polym 151:283–294PubMed Lin QW, Gao MF, Chang JL, Ma HZ (2016) Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionicdyes. Carbohydr Polym 151:283–294PubMed
106.
go back to reference Kono H, Ogasawara K, Kusumoto R, Oshima K, Hashimoto H, Shimizu Y (2016) Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): preparation, molecular dynamics, and adsorption of anionic dyes. Carbohydr Polym 152:170–180PubMed Kono H, Ogasawara K, Kusumoto R, Oshima K, Hashimoto H, Shimizu Y (2016) Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): preparation, molecular dynamics, and adsorption of anionic dyes. Carbohydr Polym 152:170–180PubMed
107.
go back to reference Wang YX, Wang ZC, Wu KL, Wu JN, Meng GH, Liu ZY, Guo XH (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120PubMed Wang YX, Wang ZC, Wu KL, Wu JN, Meng GH, Liu ZY, Guo XH (2017) Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties. Carbohydr Polym 168:112–120PubMed
108.
go back to reference Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277PubMed Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277PubMed
109.
go back to reference Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141PubMed Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol 74:136–141PubMed
110.
go back to reference O’Connor NA, Abugharbieh A, Yasmeen F, Buabeng E, Mathew S, Samaroo D, Cheng HP (2015) The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int J Biol Macromol 72:88–93PubMed O’Connor NA, Abugharbieh A, Yasmeen F, Buabeng E, Mathew S, Samaroo D, Cheng HP (2015) The crosslinking of polysaccharides with polyamines and dextran-polyallylamine antibacterial hydrogels. Int J Biol Macromol 72:88–93PubMed
111.
go back to reference Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Steinberg IM (2017) Smart bandage with wireless connectivity for optical monitoring of pH. Sensors Actuators B Chem 246:455–460 Kassal P, Zubak M, Scheipl G, Mohr GJ, Steinberg MD, Steinberg IM (2017) Smart bandage with wireless connectivity for optical monitoring of pH. Sensors Actuators B Chem 246:455–460
112.
go back to reference Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477 Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33(4):448–477
113.
go back to reference Li YP, Xiao WW, Xiao K, Berti L, Luo JT, Tseng HP, Fung G, Lam KS (2012) Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem Int Ed 51(12):2864–2869 Li YP, Xiao WW, Xiao K, Berti L, Luo JT, Tseng HP, Fung G, Lam KS (2012) Well-defined, reversible boronate crosslinked nanocarriers for targeted drug delivery in response to acidic pH values and cis-diols. Angew Chem Int Ed 51(12):2864–2869
114.
go back to reference Cheng R, Meng FH, Deng C, Klok HA, Zhong ZY (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14): 3647–3657PubMed Cheng R, Meng FH, Deng C, Klok HA, Zhong ZY (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14): 3647–3657PubMed
115.
go back to reference Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255PubMedPubMedCentral Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2(4):249–255PubMedPubMedCentral
116.
go back to reference An D, Zhao D, Li XT, Lu XH, Qiu G, Shea KJ (2015) Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties. Carbohydr Polym 134:385–389PubMed An D, Zhao D, Li XT, Lu XH, Qiu G, Shea KJ (2015) Synthesis of surfactant-free hydroxypropylcellulose nanogel and its dual-responsive properties. Carbohydr Polym 134:385–389PubMed
117.
go back to reference He L, Liang HS, Lin LF, Shah BR, Li Y, Che YJ, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B Biointerfaces 126:288–296PubMed He L, Liang HS, Lin LF, Shah BR, Li Y, Che YJ, Li B (2015) Green-step assembly of low density lipoprotein/sodium carboxymethyl cellulose nanogels for facile loading and pH-dependent release of doxorubicin. Colloids Surf B Biointerfaces 126:288–296PubMed
118.
go back to reference Liu F, Hu JW, Liu GJ, Lin SD, Tu YY, Hou CM, Zou HL, Yang Y, Wu Y, Mo YM (2014) Emulsion and nanocapsules of ternary graft copolymers. Polym Chem 5(4):1381–1392 Liu F, Hu JW, Liu GJ, Lin SD, Tu YY, Hou CM, Zou HL, Yang Y, Wu Y, Mo YM (2014) Emulsion and nanocapsules of ternary graft copolymers. Polym Chem 5(4):1381–1392
119.
go back to reference Du JZ, Tang LY, Song WJ, Shi Y, Wang J (2009) Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 10(8):2169–2174PubMed Du JZ, Tang LY, Song WJ, Shi Y, Wang J (2009) Evaluation of polymeric micelles from brush polymer with poly(epsilon-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 10(8):2169–2174PubMed
120.
go back to reference Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33(7):759–785 Sheiko SS, Sumerlin BS, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33(7):759–785
121.
go back to reference Zhao P, Liu LX, Feng XQ, Wang C, Shuai XT, Chen YM (2012) Molecular nanoworm with PCL core and PEO shell as a non-spherical carrier for drug delivery. Macromol Rapid Commun 33(16):1351–1355PubMed Zhao P, Liu LX, Feng XQ, Wang C, Shuai XT, Chen YM (2012) Molecular nanoworm with PCL core and PEO shell as a non-spherical carrier for drug delivery. Macromol Rapid Commun 33(16):1351–1355PubMed
122.
go back to reference Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2(18):6337–6342 Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2(18):6337–6342
123.
go back to reference Kettunen M, Silvennoinen RJ, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517 Kettunen M, Silvennoinen RJ, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517
124.
go back to reference Jin CF, Yan RS, Huang JG (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21(43):17519–17525 Jin CF, Yan RS, Huang JG (2011) Cellulose substance with reversible photo-responsive wettability by surface modification. J Mater Chem 21(43):17519–17525
125.
go back to reference Yu ZY, Zhang J, Coulston RJ, Parker RM, Biedermann F, Liu X, Scherman OA, Abell C (2015) Supramolecular hydrogel microcapsules via cucurbit[8]uril host-guest interactions with triggered and UV-controlled molecular permeability. Chem Sci 6(8):4929–4933PubMedPubMedCentral Yu ZY, Zhang J, Coulston RJ, Parker RM, Biedermann F, Liu X, Scherman OA, Abell C (2015) Supramolecular hydrogel microcapsules via cucurbit[8]uril host-guest interactions with triggered and UV-controlled molecular permeability. Chem Sci 6(8):4929–4933PubMedPubMedCentral
126.
go back to reference Tan CSY, del Barrio J, Liu J, Scherman OA (2015) Supramolecular polymer networks based on cucurbit[8]uril host-guest interactions as aqueous photo-rheological fluids. Polym Chem 6(44):7652–7657 Tan CSY, del Barrio J, Liu J, Scherman OA (2015) Supramolecular polymer networks based on cucurbit[8]uril host-guest interactions as aqueous photo-rheological fluids. Polym Chem 6(44):7652–7657
127.
go back to reference Yu L, Ding JD (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481PubMed Yu L, Ding JD (2008) Injectable hydrogels as unique biomedical materials. Chem Soc Rev 37(8):1473–1481PubMed
128.
go back to reference Guvendiren M, Lu HD, Burdick JA (2012) Shear-thinning hydrogels for biomedical applications. Soft Matter 8(2):260–272 Guvendiren M, Lu HD, Burdick JA (2012) Shear-thinning hydrogels for biomedical applications. Soft Matter 8(2):260–272
129.
go back to reference Yan CQ, Altunbas A, Yucel T, Nagarkar RP, Schneider JP, Pochan DJ (2010) Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6(20):5143–5156PubMedPubMedCentral Yan CQ, Altunbas A, Yucel T, Nagarkar RP, Schneider JP, Pochan DJ (2010) Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6(20):5143–5156PubMedPubMedCentral
130.
go back to reference Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30(28):4877–4888PubMed Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30(28):4877–4888PubMed
131.
go back to reference Olsen BD, Kornfield JA, Tirrell DA (2010) Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43(21):9094–9099PubMedPubMedCentral Olsen BD, Kornfield JA, Tirrell DA (2010) Yielding behavior in injectable hydrogels from telechelic proteins. Macromolecules 43(21):9094–9099PubMedPubMedCentral
132.
go back to reference Himmelein S, Lewe V, Stuart MCA, Ravoo BJ (2014) A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem Sci 5(3):1054–1058 Himmelein S, Lewe V, Stuart MCA, Ravoo BJ (2014) A carbohydrate-based hydrogel containing vesicles as responsive non-covalent cross-linkers. Chem Sci 5(3):1054–1058
133.
go back to reference Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496PubMed Markstedt K, Mantas A, Tournier I, Avila HM, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496PubMed
134.
go back to reference Moschou EA, Peteu SF, Bachas LG, Madou MJ, Daunert S (2004) Artificial muscle material with fast electroactuation under neutral pH conditions. Chem Mater 16(12):2499–2502 Moschou EA, Peteu SF, Bachas LG, Madou MJ, Daunert S (2004) Artificial muscle material with fast electroactuation under neutral pH conditions. Chem Mater 16(12):2499–2502
135.
go back to reference Morales D, Palleau E, Dickey MD, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10(9):1337–1348PubMed Morales D, Palleau E, Dickey MD, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10(9):1337–1348PubMed
136.
go back to reference Santaniello T, Migliorini L, Locatelli E, Monaco I, Yan YS, Lenardi C, Franchini MC, Milani P (2017) Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation. Smart Mater Struct 26(8): 85030–85040 Santaniello T, Migliorini L, Locatelli E, Monaco I, Yan YS, Lenardi C, Franchini MC, Milani P (2017) Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation. Smart Mater Struct 26(8): 85030–85040
137.
go back to reference Shi XN, Zheng YD, Wang C, Yue LN, Qiao K, Wang GJ, Wang LN, Quan HY (2015) Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel. RSC Adv 5(52):41820–41829 Shi XN, Zheng YD, Wang C, Yue LN, Qiao K, Wang GJ, Wang LN, Quan HY (2015) Dual stimulus responsive drug release under the interaction of pH value and pulsatile electric field for a bacterial cellulose/sodium alginate/multi-walled carbon nanotube hybrid hydrogel. RSC Adv 5(52):41820–41829
138.
go back to reference Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17PubMed Murdan S (2003) Electro-responsive drug delivery from hydrogels. J Control Release 92(1–2):1–17PubMed
139.
go back to reference Delgado-Charro MB, Guy RH (2001) Transdermal iontophoresis for controlled drug delivery and non-invasive monitoring. Stp Pharma Sci 11(6):403–414 Delgado-Charro MB, Guy RH (2001) Transdermal iontophoresis for controlled drug delivery and non-invasive monitoring. Stp Pharma Sci 11(6):403–414
140.
go back to reference Xu PA, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMed Xu PA, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMed
141.
go back to reference He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34 He F, Zhao DY, Liu JC, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34
142.
go back to reference Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO, Sung YR, Li BQ, Gurkan UA, Demirci U (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23(37): 4254–4260PubMedPubMedCentral Xu F, Wu CAM, Rengarajan V, Finley TD, Keles HO, Sung YR, Li BQ, Gurkan UA, Demirci U (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23(37): 4254–4260PubMedPubMedCentral
Metadata
Title
Stimuli-Responsive Cellulose-Based Hydrogels
Authors
Lei Miao
Min Zhang
Yuanyuan Tu
Shudong Lin
Jiwen Hu
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_12

Premium Partners