Skip to main content
Top

2019 | OriginalPaper | Chapter

28. Strain Gradient Crystal Plasticity: Thermodynamics and Implementation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter studies the thermodynamical consistency and the finite element implementation aspects of a rate-dependent nonlocal (strain gradient) crystal plasticity model, which is used to address the modeling of the size-dependent behavior of polycrystalline metallic materials. The possibilities and required updates for the simulation of dislocation microstructure evolution, grain boundary-dislocation interaction mechanisms, and localization leading to necking and fracture phenomena are shortly discussed as well. The development of the model is conducted in terms of the displacement and the plastic slip, where the coupled fields are updated incrementally through finite element method. Numerical examples illustrate the size effect predictions in polycrystalline materials through Voronoi tessellation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48, 1565–1595 (2000)MathSciNetCrossRef A. Acharya, J.L. Bassani, Lattice incompatibility and a gradient theory of crystal plasticity. J. Mech. Phys. Solids 48, 1565–1595 (2000)MathSciNetCrossRef
go back to reference E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)CrossRef E.C. Aifantis, On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. 106, 326–330 (1984)CrossRef
go back to reference E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999) E.C. Aifantis, Strain gradient interpretation of size effects. Int. J. Fract. 95, 299–314 (1999)
go back to reference K. Aifantis, J. Senger, D. Weygand, M. Zaiser, Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars. IOP Conf. Ser. Mater. Sci. Eng. 3, 012025 (2009)CrossRef K. Aifantis, J. Senger, D. Weygand, M. Zaiser, Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars. IOP Conf. Ser. Mater. Sci. Eng. 3, 012025 (2009)CrossRef
go back to reference A. Arsenlis, D.M. Parks, R. Becker, V.V. Bulatov, On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52, 1213–1246 (2004)MathSciNetCrossRef A. Arsenlis, D.M. Parks, R. Becker, V.V. Bulatov, On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52, 1213–1246 (2004)MathSciNetCrossRef
go back to reference M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRef M.F. Ashby, The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRef
go back to reference ASTM, Annual Book of ASTM Standards (ASTM International, West Conshohocken, 2009) ASTM, Annual Book of ASTM Standards (ASTM International, West Conshohocken, 2009)
go back to reference F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRef F. Aurenhammer, Voronoi diagrams – a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRef
go back to reference J.L. Bassani, Incompatibility and a simple gradient theory. J. Mech. Phys. Solids 49, 1983–1996 (2001)CrossRef J.L. Bassani, Incompatibility and a simple gradient theory. J. Mech. Phys. Solids 49, 1983–1996 (2001)CrossRef
go back to reference E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51(5), 2243–2258 (2016)CrossRef E. Bayerschen, A.T. McBride, B.D. Reddy, T. Böhlke, Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 51(5), 2243–2258 (2016)CrossRef
go back to reference C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)CrossRef C.J. Bayley, W.A.M. Brekelmans, M.G.D. Geers, A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int. J. Solids Struct. 43, 7268–7286 (2006)CrossRef
go back to reference P. van Beers, V. Kouznetsova, M. Geers, Defect redistribution within a continuum grain boundary plasticity model. J. Mech. Phys. Solids 83, 243–262 (2015a)MathSciNetCrossRef P. van Beers, V. Kouznetsova, M. Geers, Defect redistribution within a continuum grain boundary plasticity model. J. Mech. Phys. Solids 83, 243–262 (2015a)MathSciNetCrossRef
go back to reference P. van Beers, V. Kouznetsova, M. Geers, Grain boundary interfacial plasticity with incorporation of internal structure and energy. Mech. Mater. 90, 69–82 (2015b). Proceedings of the IUTAM Symposium on Micromechanics of Defects in Solids P. van Beers, V. Kouznetsova, M. Geers, Grain boundary interfacial plasticity with incorporation of internal structure and energy. Mech. Mater. 90, 69–82 (2015b). Proceedings of the IUTAM Symposium on Micromechanics of Defects in Solids
go back to reference U. Borg, A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur. J. Mech. A-Solid. 26, 313–324 (2007)CrossRef U. Borg, A strain gradient crystal plasticity analysis of grain size effects in polycrystals. Eur. J. Mech. A-Solid. 26, 313–324 (2007)CrossRef
go back to reference S.H. Chen, T.C. Wang, A new hardening law for strain gradient plasticity. Acta Mater. 48, 3997–4005 (2000)CrossRef S.H. Chen, T.C. Wang, A new hardening law for strain gradient plasticity. Acta Mater. 48, 3997–4005 (2000)CrossRef
go back to reference A. Di Schino, J. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 57(21), 3182–3185 (2003)CrossRef A. Di Schino, J. Kenny, Grain size dependence of the fatigue behaviour of a ultrafine-grained AISI 304 stainless steel. Mater. Lett. 57(21), 3182–3185 (2003)CrossRef
go back to reference F.P.E. Dunne, D. Rugg, A. Walker, Lengthscale-dependent, elastically anisotropic, physically-based HCP crystal plasticity: application to cold-dwell fatigue in Ti alloys. Int. J. Plast. 23, 1061–1083 (2007)CrossRef F.P.E. Dunne, D. Rugg, A. Walker, Lengthscale-dependent, elastically anisotropic, physically-based HCP crystal plasticity: application to cold-dwell fatigue in Ti alloys. Int. J. Plast. 23, 1061–1083 (2007)CrossRef
go back to reference L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)CrossRef L.P. Evers, W.A.M. Brekelmans, M.G.D. Geers, Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401 (2004)CrossRef
go back to reference X. Feaugas, H. Haddou, Grain-size effects on tensile behavior of nickel and AISI 316l stainless steel. Metall. Mater. Trans. A 34A, 2329–2340 (2003)CrossRef X. Feaugas, H. Haddou, Grain-size effects on tensile behavior of nickel and AISI 316l stainless steel. Metall. Mater. Trans. A 34A, 2329–2340 (2003)CrossRef
go back to reference N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 184–251 (1997)MATH N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 184–251 (1997)MATH
go back to reference N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)CrossRef N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)CrossRef
go back to reference N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRef N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRef
go back to reference N.A. Fleck, J.W. Hutchinson, J.R. Willis, Strain gradient plasticity under non-proportional loading. Proc. R. Soc. A 470, 20140267 (2014)MathSciNetCrossRef N.A. Fleck, J.W. Hutchinson, J.R. Willis, Strain gradient plasticity under non-proportional loading. Proc. R. Soc. A 470, 20140267 (2014)MathSciNetCrossRef
go back to reference M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading. Modell. Simul. Mater. Sci. Eng. 15, 133–145 (2007)CrossRef M.G.D. Geers, W.A.M. Brekelmans, C.J. Bayley, Second-order crystal plasticity: internal stress effects and cyclic loading. Modell. Simul. Mater. Sci. Eng. 15, 133–145 (2007)CrossRef
go back to reference D. Gottschalk, A. McBride, B. Reddy, A. Javili, P. Wriggers, C. Hirschberger, Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput. Mater. Sci. 111, 443–459 (2016)CrossRef D. Gottschalk, A. McBride, B. Reddy, A. Javili, P. Wriggers, C. Hirschberger, Computational and theoretical aspects of a grain-boundary model that accounts for grain misorientation and grain-boundary orientation. Comput. Mater. Sci. 111, 443–459 (2016)CrossRef
go back to reference M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)MathSciNetCrossRef M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48, 989–1036 (2000)MathSciNetCrossRef
go back to reference M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRef M.E. Gurtin, A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)MathSciNetCrossRef
go back to reference M.E. Gurtin, A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008)CrossRef M.E. Gurtin, A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int. J. Plast. 24, 702–725 (2008)CrossRef
go back to reference M.E. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)MathSciNetCrossRef M.E. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)MathSciNetCrossRef
go back to reference C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity – I. Theory. J. Mech. Phys. Solids 53, 1188–1203 (2005a)MathSciNetCrossRef C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity – I. Theory. J. Mech. Phys. Solids 53, 1188–1203 (2005a)MathSciNetCrossRef
go back to reference C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity – II. Analysis. J. Mech. Phys. Solids 53, 1204–1222 (2005b)MathSciNetCrossRef C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity – II. Analysis. J. Mech. Phys. Solids 53, 1204–1222 (2005b)MathSciNetCrossRef
go back to reference M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)CrossRef M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)CrossRef
go back to reference Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753–782 (2004)CrossRef Y. Huang, S. Qu, K.C. Hwang, M. Li, H. Gao, A conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 20, 753–782 (2004)CrossRef
go back to reference J.W. Hutchinson, Generalizing j2 flow theory: fundamental issues in strain gradient plasticity. Acta Mech. Sinica 28, 1078–1086 (2012)MathSciNetCrossRef J.W. Hutchinson, Generalizing j2 flow theory: fundamental issues in strain gradient plasticity. Acta Mech. Sinica 28, 1078–1086 (2012)MathSciNetCrossRef
go back to reference B. Klusemann, T. Yalçinkaya, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. Int. J. Plast. 48, 168–188 (2013)CrossRef B. Klusemann, T. Yalçinkaya, Plastic deformation induced microstructure evolution through gradient enhanced crystal plasticity based on a non-convex helmholtz energy. Int. J. Plast. 48, 168–188 (2013)CrossRef
go back to reference B. Klusemann, T. Yalçinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)CrossRef B. Klusemann, T. Yalçinkaya, M.G.D. Geers, B. Svendsen, Application of non-convex rate dependent gradient plasticity to the modeling and simulation of inelastic microstructure development and inhomogeneous material behavior. Comput. Mater. Sci. 80, 51–60 (2013)CrossRef
go back to reference M. Kuroda, V. Tvergaard, On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids 56, 1591–1608 (2008)MathSciNetCrossRef M. Kuroda, V. Tvergaard, On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids 56, 1591–1608 (2008)MathSciNetCrossRef
go back to reference G. Lancioni, T. Yalçinkaya, A. Cocks, Energy-based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. A 471: 20150275 (2015a)CrossRef G. Lancioni, T. Yalçinkaya, A. Cocks, Energy-based non-local plasticity models for deformation patterning, localization and fracture. Proc. R. Soc. A 471: 20150275 (2015a)CrossRef
go back to reference G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)CrossRef G. Lancioni, G. Zitti, T. Yalcinkaya, Rate-independent deformation patterning in crystal plasticity. Key Eng. Mater. 651–653, 944–949 (2015b)CrossRef
go back to reference V. Levkovitch, B. Svendsen, On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int. J. Solids Struct. 43, 7246–7267 (2006)MathSciNetCrossRef V. Levkovitch, B. Svendsen, On the large-deformation- and continuum-based formulation of models for extended crystal plasticity. Int. J. Solids Struct. 43, 7246–7267 (2006)MathSciNetCrossRef
go back to reference L. Liang, F.P.E. Dunne, GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments. Int. J. Mech. Sci. 51, 326–333 (2009)CrossRef L. Liang, F.P.E. Dunne, GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments. Int. J. Mech. Sci. 51, 326–333 (2009)CrossRef
go back to reference A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)CrossRef A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)CrossRef
go back to reference H.B. Mühlhaus, E.C. Aifantis, A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)MathSciNetCrossRef H.B. Mühlhaus, E.C. Aifantis, A variational principle for gradient plasticity. Int. J. Solids Struct. 28, 845–857 (1991)MathSciNetCrossRef
go back to reference W. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)CrossRef W. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)CrossRef
go back to reference T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids. Int. J. Plast. 21, 2071–2088 (2005)CrossRef T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids. Int. J. Plast. 21, 2071–2088 (2005)CrossRef
go back to reference I. Özdemir, T. Yalçinkaya, Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput. Mech. 54, 255–268 (2014)MathSciNetCrossRef I. Özdemir, T. Yalçinkaya, Modeling of dislocation-grain boundary interactions in a strain gradient crystal plasticity framework. Comput. Mech. 54, 255–268 (2014)MathSciNetCrossRef
go back to reference P. Perzyna, Temperature and rate dependent theory of plasticity of crystalline solids. Revue Phys. Appl. 23, 445–459 (1988)CrossRef P. Perzyna, Temperature and rate dependent theory of plasticity of crystalline solids. Revue Phys. Appl. 23, 445–459 (1988)CrossRef
go back to reference B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Contin. Mech. Thermodyn. 23, 527–549 (2011a)MathSciNetCrossRef B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 1: polycrystalline plasticity. Contin. Mech. Thermodyn. 23, 527–549 (2011a)MathSciNetCrossRef
go back to reference B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. Thermodyn. 23, 551–572 (2011b)MathSciNetCrossRef B.D. Reddy, The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity. Part 2: single-crystal plasticity. Contin. Mech. Thermodyn. 23, 551–572 (2011b)MathSciNetCrossRef
go back to reference J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)CrossRef J.R. Rice, Inelastic constitutive relations for solids: an internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)CrossRef
go back to reference J.Y. Shu, N.A. Fleck, Strain gradient crystal plasticity: size-dependent deformation of bicrystals. J. Mech. Phys. Solids 47, 297–324 (1999)CrossRef J.Y. Shu, N.A. Fleck, Strain gradient crystal plasticity: size-dependent deformation of bicrystals. J. Mech. Phys. Solids 47, 297–324 (1999)CrossRef
go back to reference M. Silhavy, The Mechanics and Thermodynamics of Continuous Media, 1st edn. (Springer, Berlin, 1997)CrossRef M. Silhavy, The Mechanics and Thermodynamics of Continuous Media, 1st edn. (Springer, Berlin, 1997)CrossRef
go back to reference J.S. Stölken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)CrossRef J.S. Stölken, A.G. Evans, A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)CrossRef
go back to reference B. Svendsen, On thermodynamic- and variational-based formulations of models for inelastic continua with internal length scales. Comput. Methods Appl. Mech. Eng. 193, 5429–5452 (2004)MathSciNetCrossRef B. Svendsen, On thermodynamic- and variational-based formulations of models for inelastic continua with internal length scales. Comput. Methods Appl. Mech. Eng. 193, 5429–5452 (2004)MathSciNetCrossRef
go back to reference B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253–1271 (2010)MathSciNetCrossRef B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58, 1253–1271 (2010)MathSciNetCrossRef
go back to reference J.G. Swadenera, E.P. Georgea, G.M. Pharra, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef J.G. Swadenera, E.P. Georgea, G.M. Pharra, The correlation of the indentation size effect measured with indenters of various shapes. J. Mech. Phys. Solids 50, 681–694 (2002)CrossRef
go back to reference G.I. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307–325 (1938) G.I. Taylor, Plastic strain in metals. J. Inst. Met. 62, 307–325 (1938)
go back to reference C.A. Volkert, E.T. Lilleodden, Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 5567–5579 (2006)CrossRef C.A. Volkert, E.T. Lilleodden, Size effects in the deformation of sub-micron au columns. Philos. Mag. 86, 5567–5579 (2006)CrossRef
go back to reference G. Voyiadjis, R. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)CrossRef G. Voyiadjis, R. Abu Al-Rub, Gradient plasticity theory with a variable length scale parameter. Int. J. Solids Struct. 42(14), 3998–4029 (2005)CrossRef
go back to reference J. Wang, J. Lian, J.R. Greer, W.D. Nix, K.S. Kim, Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 54, 3973–3982 (2006)CrossRef J. Wang, J. Lian, J.R. Greer, W.D. Nix, K.S. Kim, Size effect in contact compression of nano- and microscale pyramid structures. Acta Mater. 54, 3973–3982 (2006)CrossRef
go back to reference T. Yalcinkaya, Microstructure evolution in crystal plasticity : strain path effects and dislocation slip patterning. PhD Thesis, Eindhoven University of Technology, 2011 T. Yalcinkaya, Microstructure evolution in crystal plasticity : strain path effects and dislocation slip patterning. PhD Thesis, Eindhoven University of Technology, 2011
go back to reference T. Yalçinkaya, Multi-scale modeling of microstructure evolution induced anisotropy in metals. Key Eng. Mater. 554–557, 2388–2399 (2013)CrossRef T. Yalçinkaya, Multi-scale modeling of microstructure evolution induced anisotropy in metals. Key Eng. Mater. 554–557, 2388–2399 (2013)CrossRef
go back to reference T. Yalcinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Proc. Mater. Sci. 3, 1618–1625 (2014)CrossRef T. Yalcinkaya, G. Lancioni, Energy-based modeling of localization and necking in plasticity. Proc. Mater. Sci. 3, 1618–1625 (2014)CrossRef
go back to reference T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent nonconvex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)MathSciNetCrossRef T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Deformation patterning driven by rate dependent nonconvex strain gradient plasticity. J. Mech. Phys. Solids 59, 1–17 (2011)MathSciNetCrossRef
go back to reference T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)CrossRef T. Yalcinkaya, W.A.M. Brekelmans, M.G.D. Geers, Non-convex rate dependent strain gradient crystal plasticity and deformation patterning. Int. J. Solids Struct. 49, 2625–2636 (2012)CrossRef
go back to reference S. Yefimov, I. Groma, E. van der Giessena, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004)MathSciNetCrossRef S. Yefimov, I. Groma, E. van der Giessena, A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279–300 (2004)MathSciNetCrossRef
Metadata
Title
Strain Gradient Crystal Plasticity: Thermodynamics and Implementation
Author
Tuncay Yalçinkaya
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-58729-5_2

Premium Partners