Skip to main content
Top
Published in: Acta Mechanica 7/2023

21-03-2023 | Original Paper

Strain-rate-dependent cohesive zone modelling of charge damage behavior when a projectile penetrates multilayered targets

Authors: C. Bi, X. Guo, A. H. Wang, G. J. Weng, K. P. Qu, F. Shen, L. L. Zhu

Published in: Acta Mechanica | Issue 7/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The high impulsive overload when a projectile penetrates multilayered targets affects the performance of explosive charge, which is an important component of many weapons. A tensile stress wave is generated in the charge when the compressive stress wave is reflected from the free surface, which is the main reason of the damage occurrence. Here, the damage behavior of charge under the multiple high impulsive overloads is systematically studied by a strain-rate-dependent cohesive zone model. Therein, a critical δn (normal separation) is determined to describe the macrodamage evolution of charge by contrasting the predictions with the experimental results. Our numerical results show that the δn at the edge of charge is larger than that in the interior and that the angle between the macrodamage area and the transversal direction increases with the targets obliquity. It is found that the maximum δn and the macrodamage proportion during oblique penetration are larger than those during normal penetration. With the increase in the projectile velocity, the maximum δn and the total macrodamage proportion increase, and severe macrodamage area is closer to the tail. As the targets spacing expands, both the maximum δn and the total macrodamage proportion change non-monotonically, while the distance from the severe macrodamage area to the tail expands.
Literature
1.
go back to reference Stevens, R.: A strength model and service envelope for PBX 9501. Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2014) Stevens, R.: A strength model and service envelope for PBX 9501. Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2014)
2.
go back to reference Cui, Y.X., Chen, P.W., Liu, Y.L., Dai, K.D., Zhong, F.P.: Predicted formula of the dynamic increase factor of PBX 9501. Chin. J. Explos. Propellants 38(3), 54–58 (2015) Cui, Y.X., Chen, P.W., Liu, Y.L., Dai, K.D., Zhong, F.P.: Predicted formula of the dynamic increase factor of PBX 9501. Chin. J. Explos. Propellants 38(3), 54–58 (2015)
3.
go back to reference Chen, J.K., Li, J.L., Zhu, L.M., Li, K.W., Zhao, F., Bai, S.L.: On the tension-induced microcracks’ nucleation in a PBX substitute material under impact compression loading. Int. J. Mech. Sci. 134, 263–272 (2017)CrossRef Chen, J.K., Li, J.L., Zhu, L.M., Li, K.W., Zhao, F., Bai, S.L.: On the tension-induced microcracks’ nucleation in a PBX substitute material under impact compression loading. Int. J. Mech. Sci. 134, 263–272 (2017)CrossRef
4.
go back to reference Yang, K., Wu, Y.Q., Huang, F.L.: Damage and hotspot formation simulation for impact-shear loaded PBXs using combined microcrack and microvoid model. Euro. J. Mech. A/Solids 80, 103924 (2020)MATHCrossRef Yang, K., Wu, Y.Q., Huang, F.L.: Damage and hotspot formation simulation for impact-shear loaded PBXs using combined microcrack and microvoid model. Euro. J. Mech. A/Solids 80, 103924 (2020)MATHCrossRef
6.
go back to reference Huang, K., Yan, J., Shen, R.L., Wan, Y.L., Li, Y.K., Ge, H., Yu, H.J., Guo, L.C.: Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method. Eng. Fract. Mech. 266, 108411 (2022)CrossRef Huang, K., Yan, J., Shen, R.L., Wan, Y.L., Li, Y.K., Ge, H., Yu, H.J., Guo, L.C.: Investigation on fracture behavior of polymer-bonded explosives under compression using a viscoelastic phase-field fracture method. Eng. Fract. Mech. 266, 108411 (2022)CrossRef
7.
go back to reference Guo, Y.C., Liu, R., Chen, P.W., Zhou, B., Hu, G.Y., Han, C., Lv, K.Z., Zhu, S.P.: Mechanical behavior of PBX with different HMX crystal size during die pressing: Experimental study and DEM simulation. Compos. Sci. Technol. 222, 109378 (2022)CrossRef Guo, Y.C., Liu, R., Chen, P.W., Zhou, B., Hu, G.Y., Han, C., Lv, K.Z., Zhu, S.P.: Mechanical behavior of PBX with different HMX crystal size during die pressing: Experimental study and DEM simulation. Compos. Sci. Technol. 222, 109378 (2022)CrossRef
8.
go back to reference Mirkarimi, P.B., Moua, Y., Pease, S.T., Sain, J.D.: Fracture toughness and crack propagation in LX-17 and PBX 9502 insensitive high explosives. Int. J. Solids. Struct. 250, 111721 (2022)CrossRef Mirkarimi, P.B., Moua, Y., Pease, S.T., Sain, J.D.: Fracture toughness and crack propagation in LX-17 and PBX 9502 insensitive high explosives. Int. J. Solids. Struct. 250, 111721 (2022)CrossRef
9.
go back to reference Huang, Y.F., Deng, X.L., Bai, J.S.: Peridynamic investigation of dynamic damage behaviors of PBX confined in spherical steel shells. Mech. Mater. 172, 104389 (2022)CrossRef Huang, Y.F., Deng, X.L., Bai, J.S.: Peridynamic investigation of dynamic damage behaviors of PBX confined in spherical steel shells. Mech. Mater. 172, 104389 (2022)CrossRef
10.
go back to reference Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A.: Perforation of 12 mm thick steels by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part I: experimental study. Int. J. Imp. Eng. 27(1), 19–35 (2002)CrossRef Børvik, T., Langseth, M., Hopperstad, O.S., Malo, K.A.: Perforation of 12 mm thick steels by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part I: experimental study. Int. J. Imp. Eng. 27(1), 19–35 (2002)CrossRef
11.
go back to reference Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M.: Perforation of 12 mm thick steels by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part II: numerical simulations. Int. J. Imp. Eng. 27(1), 37–64 (2002)CrossRef Børvik, T., Hopperstad, O.S., Berstad, T., Langseth, M.: Perforation of 12 mm thick steels by 20 mm diameter projectiles with flat, hemispherical and conical noses: Part II: numerical simulations. Int. J. Imp. Eng. 27(1), 37–64 (2002)CrossRef
12.
go back to reference Chen, W., Zhang, Q.M., Hu, X.D., Bai, R.Q.: Experimental study on damage to explosive charge by impact load in the process of penetration. Chin. J. Energ. Mater. 17(3), 321–325 (2009) Chen, W., Zhang, Q.M., Hu, X.D., Bai, R.Q.: Experimental study on damage to explosive charge by impact load in the process of penetration. Chin. J. Energ. Mater. 17(3), 321–325 (2009)
13.
go back to reference Li, X., Liu, Y., Sun, Y.: Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration. Polymers 12(6), 1342 (2020)CrossRef Li, X., Liu, Y., Sun, Y.: Dynamic mechanical damage and non-shock initiation of a new polymer bonded explosive during penetration. Polymers 12(6), 1342 (2020)CrossRef
14.
go back to reference Xu, W.Z., Wang, J.Y., Li, J.L., Huang, H.: Theoretical analysis and simulation for penetration overload of a small size charge. J. Vib. Shock 30(7), 96–100 (2011) Xu, W.Z., Wang, J.Y., Li, J.L., Huang, H.: Theoretical analysis and simulation for penetration overload of a small size charge. J. Vib. Shock 30(7), 96–100 (2011)
15.
go back to reference Xu, Z.F., Li, L.L., Qu, K.P.: Study on effects of the buffer device on the anti-overloading safing of explosive charge. Sci. Technol. Eng. 18(6), 179–182 (2015) Xu, Z.F., Li, L.L., Qu, K.P.: Study on effects of the buffer device on the anti-overloading safing of explosive charge. Sci. Technol. Eng. 18(6), 179–182 (2015)
16.
go back to reference Shi, X.H., Dai, K.D., Chen, P.W., Cui, Y.X.: Numerical simulation of dynamic damage of PBX charge during the warhead penetration process. Chin. Meas. Test. 42(10), 138–142 (2016) Shi, X.H., Dai, K.D., Chen, P.W., Cui, Y.X.: Numerical simulation of dynamic damage of PBX charge during the warhead penetration process. Chin. Meas. Test. 42(10), 138–142 (2016)
17.
go back to reference Zhang, Z.A., Chen, H.J.: Research on numerical simulation of impact velocity and impact angle to hard target penetration acceleration influence. J. Syst. Simul. 19(11), 2607–2609 (2007) Zhang, Z.A., Chen, H.J.: Research on numerical simulation of impact velocity and impact angle to hard target penetration acceleration influence. J. Syst. Simul. 19(11), 2607–2609 (2007)
18.
go back to reference Wang, W.L., Huang, X.F., Yang, Y.T.: Research on the grain safety during the penetration process of semi-armor-piercing warhead. J. Naval. Aeron. Astron. Univ. 25(1), 79–82 (2010) Wang, W.L., Huang, X.F., Yang, Y.T.: Research on the grain safety during the penetration process of semi-armor-piercing warhead. J. Naval. Aeron. Astron. Univ. 25(1), 79–82 (2010)
19.
go back to reference Cheng, L.R., Wang, D.W., He, Y.J.: Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target. Acta. Armamentarii 41(1), 32–39 (2020) Cheng, L.R., Wang, D.W., He, Y.J.: Research on the damage and hot-spot generation in explosive charges during penetration into single- or multi-layer target. Acta. Armamentarii 41(1), 32–39 (2020)
20.
go back to reference Shao, Y., Zhao, H.P., Feng, X.Q., Gao, H.J.: Discontinuous crack-bridging model for fracture toughness analysis of nacre. J. Mech. Phys. Solids. 60, 1400–1419 (2012)MathSciNetCrossRef Shao, Y., Zhao, H.P., Feng, X.Q., Gao, H.J.: Discontinuous crack-bridging model for fracture toughness analysis of nacre. J. Mech. Phys. Solids. 60, 1400–1419 (2012)MathSciNetCrossRef
21.
go back to reference Shao, Y., Zhao, H.P., Feng, X.Q.: On the flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)CrossRef Shao, Y., Zhao, H.P., Feng, X.Q.: On the flaw tolerance of nacre: a theoretical study. J. R. Soc. Interface 11, 20131016 (2014)CrossRef
22.
go back to reference Shen, N., Peng, M.Y., Gu, S.T., Hu, Y.G.: Effects of the progressive damage interphase on the effective bulk behavior of spherical particulate composites. Acta. Mech. 232, 423–437 (2021)MathSciNetMATHCrossRef Shen, N., Peng, M.Y., Gu, S.T., Hu, Y.G.: Effects of the progressive damage interphase on the effective bulk behavior of spherical particulate composites. Acta. Mech. 232, 423–437 (2021)MathSciNetMATHCrossRef
23.
go back to reference Fang, C., Guo, X., Weng, G.J., Li, J.H., Chen, G.: Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model. Acta. Mech. 232, 3723–3736 (2021)MATHCrossRef Fang, C., Guo, X., Weng, G.J., Li, J.H., Chen, G.: Simulation of ductile fracture of zirconium alloys based on triaxiality dependent cohesive zone model. Acta. Mech. 232, 3723–3736 (2021)MATHCrossRef
24.
go back to reference Zhu, Z.Q., Wan, J., Wu, T.X., Huang, P.Y.: Effect of electrode processing on the stability of electrode structure. Acta. Mech. 233, 2471–2484 (2022)MathSciNetMATHCrossRef Zhu, Z.Q., Wan, J., Wu, T.X., Huang, P.Y.: Effect of electrode processing on the stability of electrode structure. Acta. Mech. 233, 2471–2484 (2022)MathSciNetMATHCrossRef
25.
go back to reference Hou, J.L., Lu, X., Li, Q.: Application of general regression neural network in identifying interfacial parameters under mixed-mode fracture. Acta. Mech. 233, 3909–3921 (2022)MATHCrossRef Hou, J.L., Lu, X., Li, Q.: Application of general regression neural network in identifying interfacial parameters under mixed-mode fracture. Acta. Mech. 233, 3909–3921 (2022)MATHCrossRef
26.
go back to reference Shi, X.H., Yu, C.X., Dai, K.D., Cui, Y.X., Chen, H.: The influence of nose shape to dynamic damage of PBX charge during the penetration process. J. Proj. Rock. Missil. Guidance 39(3), 81–85 (2019) Shi, X.H., Yu, C.X., Dai, K.D., Cui, Y.X., Chen, H.: The influence of nose shape to dynamic damage of PBX charge during the penetration process. J. Proj. Rock. Missil. Guidance 39(3), 81–85 (2019)
27.
go back to reference Bi, C., Guo, X., Qu, K.P., Shen, F.: Numerical simulation of charge damage during oblique penetration. Chin. J. Explos. Propellants 45(3), 383–387 (2022) Bi, C., Guo, X., Qu, K.P., Shen, F.: Numerical simulation of charge damage during oblique penetration. Chin. J. Explos. Propellants 45(3), 383–387 (2022)
28.
go back to reference Sun, B.P., Duan, Z.P., Wan, J.L., Liu, Y., Ou, Z.C., Huang, F.L.: Investigation on ignition of an explosive charge in a projectile during penetration based on visco-SCRAM model. Expl. Shock Waves 35(5), 689–695 (2015) Sun, B.P., Duan, Z.P., Wan, J.L., Liu, Y., Ou, Z.C., Huang, F.L.: Investigation on ignition of an explosive charge in a projectile during penetration based on visco-SCRAM model. Expl. Shock Waves 35(5), 689–695 (2015)
29.
go back to reference Zhang, X.L., Wang, H., Tan, Z.J., Wang, Z.M.: Relevance between aspect ratio of projectile and boundary effect of concrete target. J. Ordnance Equip. Eng. 39(4), 11–13 (2018) Zhang, X.L., Wang, H., Tan, Z.J., Wang, Z.M.: Relevance between aspect ratio of projectile and boundary effect of concrete target. J. Ordnance Equip. Eng. 39(4), 11–13 (2018)
30.
go back to reference Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th Int. Symposium on Ballistics, The Hague, The Netherlands (1983) Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. In: Proceedings of the 7th Int. Symposium on Ballistics, The Hague, The Netherlands (1983)
31.
go back to reference Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31–48 (1985)CrossRef
32.
go back to reference Yu, P.: Investigation on the dynamic characteristics and constitutive model of polycarbonate of aircraft. South Chin. Univ. Technol, Guangzhou (2014) Yu, P.: Investigation on the dynamic characteristics and constitutive model of polycarbonate of aircraft. South Chin. Univ. Technol, Guangzhou (2014)
33.
go back to reference Chen, G., Chen, X.W., Chen, Z.F., Qu, M.: Simulations of A3 steel blunt projectiles impacting 45 steel plates. Expl. Shock Waves 27(5), 390–397 (2007) Chen, G., Chen, X.W., Chen, Z.F., Qu, M.: Simulations of A3 steel blunt projectiles impacting 45 steel plates. Expl. Shock Waves 27(5), 390–397 (2007)
34.
go back to reference Li, S.: Study on the dynamic mechanical behavior and fracture mechanism of 35CrMnSi under shock loading. North Univ. China, Shanxi (2015) Li, S.: Study on the dynamic mechanical behavior and fracture mechanism of 35CrMnSi under shock loading. North Univ. China, Shanxi (2015)
35.
go back to reference Cui, Y.X.: Study on damage and fracture of polymer bonded explosives under impact loading. Beijing: Beijing Inst. Technol. (2017) Cui, Y.X.: Study on damage and fracture of polymer bonded explosives under impact loading. Beijing: Beijing Inst. Technol. (2017)
36.
go back to reference Yang, K., Wu, Y.Q., Huang, F.L.: Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives. J. Hazard. Mater. 356, 34–52 (2018)CrossRef Yang, K., Wu, Y.Q., Huang, F.L.: Numerical simulations of microcrack-related damage and ignition behavior of mild-impacted polymer bonded explosives. J. Hazard. Mater. 356, 34–52 (2018)CrossRef
37.
go back to reference Zhou, F.H., Molinari, J.F.: On the rate-dependency of dynamic tensile strength of a model ceramic system. Comput. Method. Appl. Mech. Eng. 194(116), 1691709 (2005) Zhou, F.H., Molinari, J.F.: On the rate-dependency of dynamic tensile strength of a model ceramic system. Comput. Method. Appl. Mech. Eng. 194(116), 1691709 (2005)
38.
go back to reference Anvari, M., Scheider, I., Thaulow, C.: Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. Eng. Fract. Mech. 73(15), 2210–2228 (2006)CrossRef Anvari, M., Scheider, I., Thaulow, C.: Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. Eng. Fract. Mech. 73(15), 2210–2228 (2006)CrossRef
39.
go back to reference Rosa, A.L., Yu, R.C., Ruiz, G., Saucedo, L., Sousa, J.L.A.O.: A loading rate dependent cohesive model for concrete fracture. Eng. Fract. Mech. 82, 195–208 (2012)CrossRef Rosa, A.L., Yu, R.C., Ruiz, G., Saucedo, L., Sousa, J.L.A.O.: A loading rate dependent cohesive model for concrete fracture. Eng. Fract. Mech. 82, 195–208 (2012)CrossRef
40.
go back to reference Salih, S., Davey, K., Zou, Z.: Rate-dependent elastic and elasto-plastic cohesive zone models for dynamic crack propagation. Int. J. Solids. Struct. 90, 95–115 (2016)CrossRef Salih, S., Davey, K., Zou, Z.: Rate-dependent elastic and elasto-plastic cohesive zone models for dynamic crack propagation. Int. J. Solids. Struct. 90, 95–115 (2016)CrossRef
41.
go back to reference Wang, K.K., Zhao, L.B., Hong, H.M., Zhang, J.Y.: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates. Compos. Struct. 201, 995–1003 (2018)CrossRef Wang, K.K., Zhao, L.B., Hong, H.M., Zhang, J.Y.: A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates. Compos. Struct. 201, 995–1003 (2018)CrossRef
42.
go back to reference Prakash, C., Gunduz, I.E., Oskay, C., Tomar, V.: Effect of interface chemistry and strain rate on particle-matrix delamination in an energetic material. Eng. Fract. Mech. 191, 46–64 (2018)CrossRef Prakash, C., Gunduz, I.E., Oskay, C., Tomar, V.: Effect of interface chemistry and strain rate on particle-matrix delamination in an energetic material. Eng. Fract. Mech. 191, 46–64 (2018)CrossRef
43.
go back to reference Tang, L.W., Zhou, W., Liu, X.H., Ma, G., Chen, M.X.: Three-dimensional mesoscopic simulation of the dynamic tensile fracture of concrete. Eng. Fract. Mech. 211, 269–281 (2019)CrossRef Tang, L.W., Zhou, W., Liu, X.H., Ma, G., Chen, M.X.: Three-dimensional mesoscopic simulation of the dynamic tensile fracture of concrete. Eng. Fract. Mech. 211, 269–281 (2019)CrossRef
44.
go back to reference Borges, C.S.P., Nunes, P.D.P., Akhavan-Safar, A., Marques, E.A.S., Carbas, R.J.C., Alfonso, L., Silva, L.F.M.: A strain rate dependent cohesive zone element for mode I modeling of the fracture behavior of adhesives. Proc. Inst. Mech. Eng., Part L: J. Mater: Design. Appl 234(4), 610–621 (2020) Borges, C.S.P., Nunes, P.D.P., Akhavan-Safar, A., Marques, E.A.S., Carbas, R.J.C., Alfonso, L., Silva, L.F.M.: A strain rate dependent cohesive zone element for mode I modeling of the fracture behavior of adhesives. Proc. Inst. Mech. Eng., Part L: J. Mater: Design. Appl 234(4), 610–621 (2020)
45.
go back to reference Li, D., Wei, D.M.: Rate-dependent cohesive zone model for fracture simulation of soda-lime glass. Materials 13(3), 749 (2020)CrossRef Li, D., Wei, D.M.: Rate-dependent cohesive zone model for fracture simulation of soda-lime glass. Materials 13(3), 749 (2020)CrossRef
46.
go back to reference Brewer, J.C., Lagace, P.A.: Quadratic stress criterion for initiation of delamination. J. Compos. Mater. 22(12), 1141–1155 (1988)CrossRef Brewer, J.C., Lagace, P.A.: Quadratic stress criterion for initiation of delamination. J. Compos. Mater. 22(12), 1141–1155 (1988)CrossRef
47.
go back to reference Cui, W.C., Wisnom, M.R., Jones, M.: A comparison of failure criteria to predict delamination of unidirectional glass/epoxy specimens waisted through the thickness. Composites 23(3), 158–166 (1992)CrossRef Cui, W.C., Wisnom, M.R., Jones, M.: A comparison of failure criteria to predict delamination of unidirectional glass/epoxy specimens waisted through the thickness. Composites 23(3), 158–166 (1992)CrossRef
48.
go back to reference ABAQUS/Explicit. ABAQUS Theory Manual and User’s Manual, version 6.11, Dassault (2014). ABAQUS/Explicit. ABAQUS Theory Manual and User’s Manual, version 6.11, Dassault (2014).
49.
go back to reference Marzi, S., Hesebeck, O., Brede, M., Kleiner, F.: A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J. Adhes. Sci. Technol. 23(6), 881–898 (2009)CrossRef Marzi, S., Hesebeck, O., Brede, M., Kleiner, F.: A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J. Adhes. Sci. Technol. 23(6), 881–898 (2009)CrossRef
50.
go back to reference Zhou, R.X., Chen, H.M., Lu, Y.: Mesoscale modelling of concrete under high strain rate tension with a rate-dependent cohesive interface approach. Int. J. Imp. Eng. 139, 103500 (2020)CrossRef Zhou, R.X., Chen, H.M., Lu, Y.: Mesoscale modelling of concrete under high strain rate tension with a rate-dependent cohesive interface approach. Int. J. Imp. Eng. 139, 103500 (2020)CrossRef
51.
go back to reference Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)CrossRef Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)CrossRef
52.
go back to reference Zhou, Z.B., Chen, P.W., Huang, F.L.: Study on dynamic fracture and mechanical properties of a PBX simulant by using DIC and SHPB method. AIP Conference Proceedings. Am. Ins. Phy. 1426(1), 665–668 (2012)CrossRef Zhou, Z.B., Chen, P.W., Huang, F.L.: Study on dynamic fracture and mechanical properties of a PBX simulant by using DIC and SHPB method. AIP Conference Proceedings. Am. Ins. Phy. 1426(1), 665–668 (2012)CrossRef
53.
go back to reference Miller, O., Freund, L.B., Needleman, A.: Modeling and simulation of dynamic fragmentation in brittle materials. Int. J. Fract. 96(2), 101–125 (1999)CrossRef Miller, O., Freund, L.B., Needleman, A.: Modeling and simulation of dynamic fragmentation in brittle materials. Int. J. Fract. 96(2), 101–125 (1999)CrossRef
54.
go back to reference Snozzi, L., Caballero, A., Molinari, J.F.: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading. Cement Concrete Res. 41(11), 1130–1142 (2011)CrossRef Snozzi, L., Caballero, A., Molinari, J.F.: Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading. Cement Concrete Res. 41(11), 1130–1142 (2011)CrossRef
55.
go back to reference Saksala, T.: Numerical modelling of concrete fracture processes under dynamic loading: Meso-mechanical approach based on embedded discontinuity finite elements. Eng. Fract. Mech. 201, 28297 (2018)CrossRef Saksala, T.: Numerical modelling of concrete fracture processes under dynamic loading: Meso-mechanical approach based on embedded discontinuity finite elements. Eng. Fract. Mech. 201, 28297 (2018)CrossRef
Metadata
Title
Strain-rate-dependent cohesive zone modelling of charge damage behavior when a projectile penetrates multilayered targets
Authors
C. Bi
X. Guo
A. H. Wang
G. J. Weng
K. P. Qu
F. Shen
L. L. Zhu
Publication date
21-03-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 7/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03541-2

Other articles of this Issue 7/2023

Acta Mechanica 7/2023 Go to the issue

Premium Partners