Skip to main content
Top
Published in: Innovative Infrastructure Solutions 3/2020

01-12-2020 | Technical paper

Strength and permeability potentials of cement-modified desert sand for roads construction purpose

Authors: Talal S. Amhadi, Gabriel J. Assaf

Published in: Innovative Infrastructure Solutions | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The costs associated with the transportation and manufacture of crushed fine aggregate (CFA) as a material for base and subbase layers in roads construction creates a need for a good view of strategies that can take advantage of local materials, such as natural desert sand (NDS). NDS is not normally considered to be of sufficient quality for road construction, mainly because of less cohesion between particles and low bearing capacity under traffic loads. However, when it is mixed with CFA and a small amount of ordinary Portland cement (OPC), project costs can be limited while creating an exceptional quality for road constructions. This experimental research builds on previous studies that evaluated the optimal ratio of NDS by percentages of CFA. In addition, this paper examines the optimal percentage of OPC in the fine aggregate mix. The percentages tested were 0, 3, 5, and 7% of OPC. The tests carried out by California bearing ratio (CBR), compaction, permeability, unconfined compressive strength (UCS), and shear strength parameters. Finally, the UCS test was critical in determining that OPC improved the mixture’s mechanical properties. Other important factors that substantially impact mechanical properties, were cement percentage, curing time, dry density, and moisture content.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Little DN (1998) Evaluation of structural properties of lime stabilized soils and aggregates. National Lime Association, Arlington Little DN (1998) Evaluation of structural properties of lime stabilized soils and aggregates. National Lime Association, Arlington
2.
go back to reference Kalantari B, Huat BBK (2008) Peat soil stabilization, using ordinary Portland cement, polypropylene fibers, and air curing technique. Electron J Geotech Eng 13:1–13 Kalantari B, Huat BBK (2008) Peat soil stabilization, using ordinary Portland cement, polypropylene fibers, and air curing technique. Electron J Geotech Eng 13:1–13
4.
go back to reference Schnaid F, Prietto PDM, Consoli NC (2001) Characterization of cemented sand in triaxial compression. J Geotech Geoenviron Eng 127(10):857–868CrossRef Schnaid F, Prietto PDM, Consoli NC (2001) Characterization of cemented sand in triaxial compression. J Geotech Geoenviron Eng 127(10):857–868CrossRef
5.
go back to reference Onyelowe KC (2016) Ordinary Portland cement stabilization of engineering soil using coconut shell and husk ash as admixture. Int J Innov Stud Sci Eng Technol 2:1–5 Onyelowe KC (2016) Ordinary Portland cement stabilization of engineering soil using coconut shell and husk ash as admixture. Int J Innov Stud Sci Eng Technol 2:1–5
7.
go back to reference Johansen JM, Senstad PK (1992) Effects of tire pressures on flexible pavement structures; a literature survey. Publication 62. ISSN: 0781–5816. Johansen JM, Senstad PK (1992) Effects of tire pressures on flexible pavement structures; a literature survey. Publication 62. ISSN: 0781–5816.
8.
go back to reference Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133(2):197–205CrossRef Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133(2):197–205CrossRef
9.
go back to reference Lo SR, Wardani SPR (2002) Strength and dilatancy of a silt stabilized by a cement and fly ash mixture. Can Geotech J 39(1):77–89CrossRef Lo SR, Wardani SPR (2002) Strength and dilatancy of a silt stabilized by a cement and fly ash mixture. Can Geotech J 39(1):77–89CrossRef
10.
go back to reference da Fonseca AV, Cruz RC, Consoli NC (2009) Strength properties of sandy soil–cement admixtures. Geotech Geol Eng 27(6):681–686CrossRef da Fonseca AV, Cruz RC, Consoli NC (2009) Strength properties of sandy soil–cement admixtures. Geotech Geol Eng 27(6):681–686CrossRef
11.
go back to reference Joel M, Agbede IO (2010) Cement stabilization of Igumale shale lime admixture for use as flexible pavement construction material. Electron J Geotech Eng 15:1661–1673 Joel M, Agbede IO (2010) Cement stabilization of Igumale shale lime admixture for use as flexible pavement construction material. Electron J Geotech Eng 15:1661–1673
12.
go back to reference Abbasi N, Bahramloo R, Movahedan M (2015) Strategic planning for remediation and optimization of irrigation and drainage networks: a case study for Iran. Agric Agric Sci Procedia 4:211–221 Abbasi N, Bahramloo R, Movahedan M (2015) Strategic planning for remediation and optimization of irrigation and drainage networks: a case study for Iran. Agric Agric Sci Procedia 4:211–221
13.
go back to reference Baghini MS, Bin Ismail A, Bin Karim MR, Shokri F, Firoozi AA (2017) Effects on engineering properties of cement-treated road base with slow setting bitumen emulsion. Int J Pavement Eng 18(3):202–215CrossRef Baghini MS, Bin Ismail A, Bin Karim MR, Shokri F, Firoozi AA (2017) Effects on engineering properties of cement-treated road base with slow setting bitumen emulsion. Int J Pavement Eng 18(3):202–215CrossRef
14.
go back to reference Xuan DX, Houben LJM, Molenaar AAA, Shui ZH (2012) Mechanical properties of cement-treated aggregate material—a review. Mater Des 33:496–502CrossRef Xuan DX, Houben LJM, Molenaar AAA, Shui ZH (2012) Mechanical properties of cement-treated aggregate material—a review. Mater Des 33:496–502CrossRef
15.
go back to reference Molenaar AA, Xuan D, Houben LJM, Shui Z (2011) Prediction of the mechanical characteristics of cement treated demolition waste for road bases and subbases. In: Proceedings of the 10th conference on asphalt pavements for Southern Africa, KwaZulu-Natal, South Africa Molenaar AA, Xuan D, Houben LJM, Shui Z (2011) Prediction of the mechanical characteristics of cement treated demolition waste for road bases and subbases. In: Proceedings of the 10th conference on asphalt pavements for Southern Africa, KwaZulu-Natal, South Africa
16.
go back to reference M. O. T. China (2000) Technical specifications for construction of highway roadbases. JTJ 034-2000 M. O. T. China (2000) Technical specifications for construction of highway roadbases. JTJ 034-2000
17.
go back to reference Linares-Unamunzaga A, Pérez-Acebo H, Rojo M, Gonzalo-Orden H (2019) Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days. Materials (Basel) 12(3):387CrossRef Linares-Unamunzaga A, Pérez-Acebo H, Rojo M, Gonzalo-Orden H (2019) Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days. Materials (Basel) 12(3):387CrossRef
19.
go back to reference A. International (2004) Annual book of ASTM standards. ASTM International, West Conshohocken A. International (2004) Annual book of ASTM standards. ASTM International, West Conshohocken
20.
go back to reference Aa. Highway and T. Officials (1993) AASHTO guide for design of pavement structures. Aashto, Washington, DC Aa. Highway and T. Officials (1993) AASHTO guide for design of pavement structures. Aashto, Washington, DC
21.
go back to reference Haralambos SI (2009) Compressive strength of soil improved with cement. In: Contemporary topics in ground modification, problem soils, and geo-support, pp 289–296 Haralambos SI (2009) Compressive strength of soil improved with cement. In: Contemporary topics in ground modification, problem soils, and geo-support, pp 289–296
22.
go back to reference Firoozi AA, Olgun CG, Firoozi AA, Baghini MS (2017) Fundamentals of soil stabilization. Int J Geoeng 8(1):26 Firoozi AA, Olgun CG, Firoozi AA, Baghini MS (2017) Fundamentals of soil stabilization. Int J Geoeng 8(1):26
23.
go back to reference Consoli NC, Vendruscolo MA, Fonini A, Dalla Rosa F (2009) Fiber reinforcement effects on sand considering a wide cementation range. Geotext Geomembr 27(3):196–203CrossRef Consoli NC, Vendruscolo MA, Fonini A, Dalla Rosa F (2009) Fiber reinforcement effects on sand considering a wide cementation range. Geotext Geomembr 27(3):196–203CrossRef
24.
go back to reference Consoli NC, Cruz RC, Floss MF, Festugato L (2009) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136(5):759–763CrossRef Consoli NC, Cruz RC, Floss MF, Festugato L (2009) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136(5):759–763CrossRef
25.
go back to reference Al-Aghbari MY, Mohamedzein Y-A, Taha R (2009) Stabilisation of desert sands using cement and cement dust. Proc Inst Civ Eng Improv 162(3):145–151 Al-Aghbari MY, Mohamedzein Y-A, Taha R (2009) Stabilisation of desert sands using cement and cement dust. Proc Inst Civ Eng Improv 162(3):145–151
26.
go back to reference ASTM D1557-12e1 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA. www.astm.org ASTM D1557-12e1 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)), ASTM International, West Conshohocken, PA. www.​astm.​org
27.
go back to reference ASTM D1883-16 (2016) Standard test method for California bearing ratio (CBR) of laboratory-compacted soils, ASTM International, West Conshohocken, PA. www.astm.org ASTM D1883-16 (2016) Standard test method for California bearing ratio (CBR) of laboratory-compacted soils, ASTM International, West Conshohocken, PA. www.​astm.​org
28.
go back to reference ASTM D2166/D2166M-16 (2016) Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA. www.astm.org ASTM D2166/D2166M-16 (2016) Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA. www.​astm.​org
29.
go back to reference ASTM D7181-11 (2011) Method for consolidated drained triaxial compression test for soils, ASTM International, West Conshohocken, PA. www.astm.org ASTM D7181-11 (2011) Method for consolidated drained triaxial compression test for soils, ASTM International, West Conshohocken, PA. www.​astm.​org
30.
go back to reference ASTM D7664-10 (2018) e1, standard test methods for measurement of hydraulic conductivity of unsaturated soils, ASTM International, West Conshohocken, PA, 2010. www.astm.org ASTM D7664-10 (2018) e1, standard test methods for measurement of hydraulic conductivity of unsaturated soils, ASTM International, West Conshohocken, PA, 2010. www.​astm.​org
31.
go back to reference Lade PV, Liggio CD, Yamamuro JA (1998) Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech Test J 21(4):336–347CrossRef Lade PV, Liggio CD, Yamamuro JA (1998) Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech Test J 21(4):336–347CrossRef
Metadata
Title
Strength and permeability potentials of cement-modified desert sand for roads construction purpose
Authors
Talal S. Amhadi
Gabriel J. Assaf
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Innovative Infrastructure Solutions / Issue 3/2020
Print ISSN: 2364-4176
Electronic ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-020-00327-6

Other articles of this Issue 3/2020

Innovative Infrastructure Solutions 3/2020 Go to the issue