Skip to main content
Top
Published in: Strength of Materials 4/2015

01-07-2015

Strength Evaluation of Stomatologic Polymers by Wavelet Transform of Acoustic Emission Signals

Authors: V. R. Skal’s’kii, V. F. Makeev, O. M. Stankevich, O. S. Kyrmanov, S. I. Vynnyts’ka, V. K. Opanasovich

Published in: Strength of Materials | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fracture behavior of polymer materials employed in stomatologic practice for preparing provisional constructions is examined. Fracture patterns in polymers are shown to be alternating (ductile, ductile-brittle, brittle) under loading. Fracture patterns of those materials in quasistatic tension were evaluated by criterion parameter values, they were ranged by the brittleness characteristic.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. A. Berlin, “Advanced polymer composite materials (PCM),” Soros. Obraz. Zh., No. 1, 57–65 (1995). A. A. Berlin, “Advanced polymer composite materials (PCM),” Soros. Obraz. Zh., No. 1, 57–65 (1995).
2.
go back to reference M. Balkenhol, P. Ferger, M. C. Mautner, and B. Wöstmann, “Provisional crown and fixed partial denture materials: mechanical properties and degree of conversion,” Dent. Mater., 23, No. 12, 1574–1583 (2007).CrossRef M. Balkenhol, P. Ferger, M. C. Mautner, and B. Wöstmann, “Provisional crown and fixed partial denture materials: mechanical properties and degree of conversion,” Dent. Mater., 23, No. 12, 1574–1583 (2007).CrossRef
5.
go back to reference S. H. Kim and D. C. Watts, “In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials,” Dent. Mater., 23, No. 12, 1570–1573 (2007).CrossRef S. H. Kim and D. C. Watts, “In vitro study of edge-strength of provisional polymer-based crown and fixed partial denture materials,” Dent. Mater., 23, No. 12, 1570–1573 (2007).CrossRef
6.
go back to reference S. S. Scherrer, A. H. W. Wiskott, V. Coto-Hunziker, and U. C. Belser, “Monotonic flexure and fatigue strength of composites for provisional and definitive restorations,” J. Prosthet. Dent., 89, No. 6, 579–588 (2003).CrossRef S. S. Scherrer, A. H. W. Wiskott, V. Coto-Hunziker, and U. C. Belser, “Monotonic flexure and fatigue strength of composites for provisional and definitive restorations,” J. Prosthet. Dent., 89, No. 6, 579–588 (2003).CrossRef
8.
go back to reference S. D. Arutyunov and E. N. Chumachenko, “Analysis of strength characteristics of Acrodent structural material used in the technology of provisional prostheses,” Panorama Ortoped. Stomat., No. 4, 34–37 (2005). S. D. Arutyunov and E. N. Chumachenko, “Analysis of strength characteristics of Acrodent structural material used in the technology of provisional prostheses,” Panorama Ortoped. Stomat., No. 4, 34–37 (2005).
9.
go back to reference D. Betteridge, P. A. Connors, T. Lilley., et al., “Analysis of acoustic emissions from polymers,” Polymer, 24, No. 9, 1206–1212 (1983).CrossRef D. Betteridge, P. A. Connors, T. Lilley., et al., “Analysis of acoustic emissions from polymers,” Polymer, 24, No. 9, 1206–1212 (1983).CrossRef
10.
go back to reference D. Betteridge, J. V. Cridland, T. Lilley, et al., “Acoustic emission and e.s.r. studies of polymers under stress,” Polymer, 23, No. 2, 178–184 (1982).CrossRef D. Betteridge, J. V. Cridland, T. Lilley, et al., “Acoustic emission and e.s.r. studies of polymers under stress,” Polymer, 23, No. 2, 178–184 (1982).CrossRef
11.
go back to reference T. Xu, H. Lei, and C. S. Xie, “Investigation of impact fracture process with particle- filled polymer materials by acoustic emission,” Polymer Testing, 21, No. 3, 319–324 (2002).CrossRef T. Xu, H. Lei, and C. S. Xie, “Investigation of impact fracture process with particle- filled polymer materials by acoustic emission,” Polymer Testing, 21, No. 3, 319–324 (2002).CrossRef
12.
go back to reference Y. Xu and B. G. Mellor, “Application of acoustic emission to detect damage mechanisms of particulate filled thermoset polymeric coatings in four-point bend tests,” Surf. Coat. Technol., 205, No. 23–24, 5478–5482 (2011).CrossRef Y. Xu and B. G. Mellor, “Application of acoustic emission to detect damage mechanisms of particulate filled thermoset polymeric coatings in four-point bend tests,” Surf. Coat. Technol., 205, No. 23–24, 5478–5482 (2011).CrossRef
13.
go back to reference N. S. Choi, J. U. Gu, and K. Arakawa, “Acoustic emission characterization of the marginal disintegration of dental composite restoration,” Composites Part A: Appl. Sci. Manufact., 42, No. 6, 604–611 (2011).CrossRef N. S. Choi, J. U. Gu, and K. Arakawa, “Acoustic emission characterization of the marginal disintegration of dental composite restoration,” Composites Part A: Appl. Sci. Manufact., 42, No. 6, 604–611 (2011).CrossRef
14.
go back to reference Q. Q. Ni and M. Iwamoto, “Wavelet transform of acoustic emission signals in failure of model composites,” Eng. Fract. Mech., 69, 717–728 (2002).CrossRef Q. Q. Ni and M. Iwamoto, “Wavelet transform of acoustic emission signals in failure of model composites,” Eng. Fract. Mech., 69, 717–728 (2002).CrossRef
15.
go back to reference V. R. Skal’skii, L. R. Botvina, O. M. Stankevich, et al., “Diagnostics of fracture mechanisms of 39KhN3MFA steel by the wavelet transform of acoustic emission signals,” Tekhn. Diagnost. Nerazr. Kontr., No. 3, 12–17 (2011). V. R. Skal’skii, L. R. Botvina, O. M. Stankevich, et al., “Diagnostics of fracture mechanisms of 39KhN3MFA steel by the wavelet transform of acoustic emission signals,” Tekhn. Diagnost. Nerazr. Kontr., No. 3, 12–17 (2011).
16.
go back to reference I. Daubechies, Ten Lektures on Wavelets, SIAM (1992). I. Daubechies, Ten Lektures on Wavelets, SIAM (1992).
17.
go back to reference V. R. Skal’skii, S. I. Builo, and E. M. Stankevich, “A criterion for evaluating the brittle fracturing of glass using acoustic emission signals,” Russian J. Nondestr. Testing, 48, No. 5, 277–284 (2012).CrossRef V. R. Skal’skii, S. I. Builo, and E. M. Stankevich, “A criterion for evaluating the brittle fracturing of glass using acoustic emission signals,” Russian J. Nondestr. Testing, 48, No. 5, 277–284 (2012).CrossRef
19.
go back to reference V. R. Skal’s’kii, B. P. Klim, R. M. Plakhtii, et al., “SKOP-8M portable system for the measurement and analysis of acoustic emission signals,” Nauka Innov., 6, No. 3, 20–29 (2010). V. R. Skal’s’kii, B. P. Klim, R. M. Plakhtii, et al., “SKOP-8M portable system for the measurement and analysis of acoustic emission signals,” Nauka Innov., 6, No. 3, 20–29 (2010).
20.
go back to reference V. V. Bozhidarnik, V. R. Skal’s’kii, and Yu. Ya. Matviiv, Diagnostics of Glass Fiber Composites by the Acoustic Emission Method [in Ukrainian], Naukova Dumka, Kiev (2012). V. V. Bozhidarnik, V. R. Skal’s’kii, and Yu. Ya. Matviiv, Diagnostics of Glass Fiber Composites by the Acoustic Emission Method [in Ukrainian], Naukova Dumka, Kiev (2012).
21.
go back to reference V. R. Skal’s’kii, O. M. Stankevich, V. Z. Stankevich, and Yu. Ya. Matviiv, “Amplitude-frequency characteristics of elastic vibrations of the half space surface weakened by a penny-shaped mode I crack,” in: Bridges and Tunnels: Theory, Investigations, Practice [in Ukrainin], Collected Scientific Works, Lazaryan DNUZT, Issue 3, (2012), pp. 175–180. V. R. Skal’s’kii, O. M. Stankevich, V. Z. Stankevich, and Yu. Ya. Matviiv, “Amplitude-frequency characteristics of elastic vibrations of the half space surface weakened by a penny-shaped mode I crack,” in: Bridges and Tunnels: Theory, Investigations, Practice [in Ukrainin], Collected Scientific Works, Lazaryan DNUZT, Issue 3, (2012), pp. 175–180.
Metadata
Title
Strength Evaluation of Stomatologic Polymers by Wavelet Transform of Acoustic Emission Signals
Authors
V. R. Skal’s’kii
V. F. Makeev
O. M. Stankevich
O. S. Kyrmanov
S. I. Vynnyts’ka
V. K. Opanasovich
Publication date
01-07-2015
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2015
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-015-9691-6

Other articles of this Issue 4/2015

Strength of Materials 4/2015 Go to the issue

Premium Partners