Skip to main content
Top

2014 | OriginalPaper | Chapter

4. Stress

Author : Alan D. Freed

Published in: Soft Solids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The concept of stress traces back nearly two centuries to the published works of Cauchy (1827). Cauchy generalized Euler’s concept of pressure and the hydrodynamic laws that Euler derived some 70 years earlier. Cauchy made the notion of stress precise. He surmised that a body responds to externally applied loads by transmitting forces internally throughout the body via a matrix valued field that now bears his name: Cauchy stress. Not only did Cauchy develop the concept of stress, but he also derived the physical conservation laws that apply to stress. In doing so, he generalized Euler’s theory for an inviscid fluid.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Cauchy stress is expressed in an uppercase font, as if it were a Lagrangian field, but it is not; Cauchy stress is an Eulerian field. The notation https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figq_HTML.gif is adopted for historical reasons. https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figr_HTML.gif is the commonly accepted notation for Cauchy stress when written in a roman font [cf. Truesdell and Noll (2004)]. The engineering stress that associates with the infinitesimal strain https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figs_HTML.gif of Eq. (3.​22) is typically denoted as https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figt_HTML.gif , which appears in the linear theory of elasticity.
 
2
Seventy years before Cauchy’s work, Euler derived a field equation that describes Newton’s laws of motion for an inviscid fluid, i.e., https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figahsda_HTML.gif
where https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figai_HTML.gif is the internal hydrodynamic pressure, which Cauchy described in terms of stress as https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figaj_HTML.gif . Seventy additional years passed before Cauchy’s genius was able to generalize Euler’s governing equation for hydrodynamics to that of a general material. Of this, Truesdell (1961) wrote:
“Nothing is harder to surmount than a corpus of true but too specific knowledge; to reforge the tradition of his forebears is the greatest originality a man can have.”
 
3
The force of reaction is understood to exist and to be present, but it is not drawn so as to keep the schematic simple and uncluttered. This is true of most schematics drawn for this chapter. This force is carried through a clamped boundary condition, which is drawn as a hatched surface.
 
4
To capture https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figjm_HTML.gif in fluid experiments, shear flows are set up along planes with curvature. Analysis of these BVPs exceeds the scope of this book. The interested reader is referred to the texts by Bird et al. (1987a), Ferry (1980), and Lodge (1974).
 
5
In the presence of curvature, e.g., for a balloon, a pressure https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figjv_HTML.gif acting normal to the surface of a membrane can exist. In such cases, this normal pressure is balanced by the four in-plane stress components https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-03551-2_4/MediaObjects/315668_1_En_4_Figjw_HTML.gif , i, j = 1, 2 that are carried along the curved membrane surface. A study of curvature lies beyond the intended scope of this introductory text.
 
Literature
go back to reference Aaron, B. B., & Gosline, J. M. (1981). Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers. Biopolymers, 20, 1247–1260. Aaron, B. B., & Gosline, J. M. (1981). Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers. Biopolymers, 20, 1247–1260.
go back to reference Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. Washington, DC: National Bureau of Standards. Republished by New York, NY: Dover Publications. Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions: With formulas, graphs, and mathematical tables. Washington, DC: National Bureau of Standards. Republished by New York, NY: Dover Publications.
go back to reference Almansi, E. (1911). Sulle deformazioni finite dei solidi elastici isotropi. Rendiconti della Reale Accademia dei Lincei: Classe di scienze fisiche, matematiche e naturali (Vol. 20, pp. 705–714). Roma: L’Accademia. Almansi, E. (1911). Sulle deformazioni finite dei solidi elastici isotropi. Rendiconti della Reale Accademia dei Lincei: Classe di scienze fisiche, matematiche e naturali (Vol. 20, pp. 705–714). Roma: L’Accademia.
go back to reference Atluri, S. N., & Cazzani, A. (1995). Rotations in computational solid mechanics. Archives of Computational Methods in Engineering, 2, 49–138.MathSciNet Atluri, S. N., & Cazzani, A. (1995). Rotations in computational solid mechanics. Archives of Computational Methods in Engineering, 2, 49–138.MathSciNet
go back to reference Bagley, R. L. (1987). Power law and fractional calculus model of viscoelasticity. AIAA Journal, 27(10), 1412–1417. Bagley, R. L. (1987). Power law and fractional calculus model of viscoelasticity. AIAA Journal, 27(10), 1412–1417.
go back to reference Bagley, R. L. (1991). The thermorheologically complex material. International Journal of Engineering Science, 29, 797–806.MATH Bagley, R. L. (1991). The thermorheologically complex material. International Journal of Engineering Science, 29, 797–806.MATH
go back to reference Bagley, R. L., & Torvik, P. J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27, 201–210.MATH Bagley, R. L., & Torvik, P. J. (1983). A theoretical basis for the application of fractional calculus to viscoelasticity. Journal of Rheology, 27, 201–210.MATH
go back to reference Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J. J. (2012). Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos (Vol. 3). Singapore: World Scientific. Baleanu, D., Diethelm, K., Scalas, E., & Trujillo, J. J. (2012). Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos (Vol. 3). Singapore: World Scientific.
go back to reference Bell, J. F. (1983). Continuum plasticity at finite strain for stress paths of arbitrary composition and direction. Archive for Rational Mechanics and Analysis, 84, 139–170.MATH Bell, J. F. (1983). Continuum plasticity at finite strain for stress paths of arbitrary composition and direction. Archive for Rational Mechanics and Analysis, 84, 139–170.MATH
go back to reference Belytschko, T., Liu, W. K., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Chichester: Wiley.MATH Belytschko, T., Liu, W. K., & Moran, B. (2000). Nonlinear finite elements for continua and structures. Chichester: Wiley.MATH
go back to reference Bernstein, B. (1960). Hypo-elasticity and elasticity. Archive for Rational Mechanics and Analysis, 6, 90–104. Bernstein, B. (1960). Hypo-elasticity and elasticity. Archive for Rational Mechanics and Analysis, 6, 90–104.
go back to reference Bernstein, B., & Rajagopal, K. R. (2008). Thermodynamics of hypoelasticity. Zeitschrift für angewandte Mathematik und Physik, 59, 537–553.MATHMathSciNet Bernstein, B., & Rajagopal, K. R. (2008). Thermodynamics of hypoelasticity. Zeitschrift für angewandte Mathematik und Physik, 59, 537–553.MATHMathSciNet
go back to reference Bernstein, B., & Shokooh, A. (1980). The stress clock function in viscoelasticity. Journal of Rheology, 24, 189–211.MATHMathSciNet Bernstein, B., & Shokooh, A. (1980). The stress clock function in viscoelasticity. Journal of Rheology, 24, 189–211.MATHMathSciNet
go back to reference Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1963). A study of stress relaxation with finite strain. Transactions of the Society of Rheology, 7, 391–410.MATH Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1963). A study of stress relaxation with finite strain. Transactions of the Society of Rheology, 7, 391–410.MATH
go back to reference Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1964). Thermodynamics of perfect elastic fluids. Journal of Research of the National Bureau of Standards–B. Mathematics and Mathematical Physics, 68B, 103–113. Bernstein, B., Kearsley, E. A., & Zapas, L. J. (1964). Thermodynamics of perfect elastic fluids. Journal of Research of the National Bureau of Standards–B. Mathematics and Mathematical Physics, 68B, 103–113.
go back to reference Biot, M. A. (1939). Non-linear theory of elasticity and the linearized case for a body under initial stress. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 27, 468–489. Biot, M. A. (1939). Non-linear theory of elasticity and the linearized case for a body under initial stress. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 27, 468–489.
go back to reference Bird, R. B., Armstrong, R. C., & Hassager, O. (1987a). Dynamics of polymeric liquids: Fluid mechanics (2nd ed., Vol. 1). New York: Wiley. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987a). Dynamics of polymeric liquids: Fluid mechanics (2nd ed., Vol. 1). New York: Wiley.
go back to reference Bird, R. B., Curtiss, C. F., Armstrong, R. C., & Hassager, O. (1987b). Dynamics of polymeric liquids: Kinetic theory (2nd ed., Vol. 2). New York: Wiley. Bird, R. B., Curtiss, C. F., Armstrong, R. C., & Hassager, O. (1987b). Dynamics of polymeric liquids: Kinetic theory (2nd ed., Vol. 2). New York: Wiley.
go back to reference Blatz, P. J., Chu, B. M., & Wayland, H. (1969). On the mechanical behavior of elastic animal tissue. Transactions of the Society of Rheology, 13(1), 83–102. Blatz, P. J., Chu, B. M., & Wayland, H. (1969). On the mechanical behavior of elastic animal tissue. Transactions of the Society of Rheology, 13(1), 83–102.
go back to reference Boltzmann, L. (1874). Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien, 70(2), pp. 275–300). Boltzmann, L. (1874). Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, Wien, 70(2), pp. 275–300).
go back to reference Bonet, J., & Wood, R. D. (1997). Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press.MATH Bonet, J., & Wood, R. D. (1997). Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press.MATH
go back to reference Bowen, R. M. (1989). Introduction to continuum mechanics for engineers. Mathematical concepts and methods in science and engineering (Vol. 39). New York: Plenum Press. (Republished by Mineola, NY: Dover Publications, revised, 2007, 2009) Bowen, R. M. (1989). Introduction to continuum mechanics for engineers. Mathematical concepts and methods in science and engineering (Vol. 39). New York: Plenum Press. (Republished by Mineola, NY: Dover Publications, revised, 2007, 2009)
go back to reference Braß, H. (1977). Quadraturverfahren. Studia mathematica (Vol. 3). Göttingen: Vandenhoeck & Ruprecht. Braß, H. (1977). Quadraturverfahren. Studia mathematica (Vol. 3). Göttingen: Vandenhoeck & Ruprecht.
go back to reference Bridgman, P. W. (1923). The compressibility of thirty metals as a function of pressure and temperature. Proceedings of the American Academy of Arts and Sciences, 58, 165–242. Bridgman, P. W. (1923). The compressibility of thirty metals as a function of pressure and temperature. Proceedings of the American Academy of Arts and Sciences, 58, 165–242.
go back to reference Brunner, H. (2004). Collocation methods for Volterra integral and related functional equations. Cambridge monographs on applied and computational mathematics (Vol. 15). Cambridge: Cambridge University Press. Brunner, H. (2004). Collocation methods for Volterra integral and related functional equations. Cambridge monographs on applied and computational mathematics (Vol. 15). Cambridge: Cambridge University Press.
go back to reference Butcher, J. C. (2008). Numerical methods for ordinary differential equations (2nd ed.). Chichester: Wiley.MATH Butcher, J. C. (2008). Numerical methods for ordinary differential equations (2nd ed.). Chichester: Wiley.MATH
go back to reference Butcher, J. C., & Podhaisky, H. (2006). On error estimation in general linear methods for stiff ODEs. Applied Numerical Mathematics, 56, 345–357.MATHMathSciNet Butcher, J. C., & Podhaisky, H. (2006). On error estimation in general linear methods for stiff ODEs. Applied Numerical Mathematics, 56, 345–357.MATHMathSciNet
go back to reference Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539. Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal of the Royal Astronomical Society, 13, 529–539.
go back to reference Caputo, M., & Mainardi, F. (1971b) A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91, 134–147. Caputo, M., & Mainardi, F. (1971b) A new dissipation model based on memory mechanism. Pure and Applied Geophysics, 91, 134–147.
go back to reference Caputo, M., & Mainardi, F. (1971a). Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento, 1, 161–198. Caputo, M., & Mainardi, F. (1971a). Linear models of dissipation in anelastic solids. Rivista del Nuovo Cimento, 1, 161–198.
go back to reference Carton, R. W., Dainauskas, J., & Clark, J. W. (1962). Elastic properties of single elastic fibers. Journal of Applied Physiology, 17(3), 547–551. Carton, R. W., Dainauskas, J., & Clark, J. W. (1962). Elastic properties of single elastic fibers. Journal of Applied Physiology, 17(3), 547–551.
go back to reference Catsiff, E., & Tobolsky, A. V. (1955). Stress-relaxation of polyisobutylene in the transition region (1,2). Journal of Colloid and Interface Science, 10, 375–392. Catsiff, E., & Tobolsky, A. V. (1955). Stress-relaxation of polyisobutylene in the transition region (1,2). Journal of Colloid and Interface Science, 10, 375–392.
go back to reference Cauchy, A. -L. (1827) Exercices de mathématiques (Vol. 2). Paris: de Bure Frères. Cauchy, A. -L. (1827) Exercices de mathématiques (Vol. 2). Paris: de Bure Frères.
go back to reference Chadwick, P. (1976), Continuum Mechanics: Concise theory and problems. London: George Allen & Unwin. (Republished by Mineola, NY: Dover Publications, 2nd ed., 1999) Chadwick, P. (1976), Continuum Mechanics: Concise theory and problems. London: George Allen & Unwin. (Republished by Mineola, NY: Dover Publications, 2nd ed., 1999)
go back to reference Cheng, H., & Gupta, K. C. (1989). An historical note on finite rotations. Journal of Applied Mechanics, 56, 139–145.MathSciNet Cheng, H., & Gupta, K. C. (1989). An historical note on finite rotations. Journal of Applied Mechanics, 56, 139–145.MathSciNet
go back to reference Christensen, R. M. (1971). Theory of viscoelasticity: An introduction. New York: Academic. Christensen, R. M. (1971). Theory of viscoelasticity: An introduction. New York: Academic.
go back to reference Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics: I. Alternating current characteristics. Journal of Chemical Physics, 9, 341–351. Cole, K. S., & Cole, R. H. (1941). Dispersion and absorption in dielectrics: I. Alternating current characteristics. Journal of Chemical Physics, 9, 341–351.
go back to reference Cole, K. S., & Cole, R. H. (1942). Dispersion and absorption in dielectrics: II. Direct current characteristics. Journal of Chemical Physics, 10, 98–105. Cole, K. S., & Cole, R. H. (1942). Dispersion and absorption in dielectrics: II. Direct current characteristics. Journal of Chemical Physics, 10, 98–105.
go back to reference Coleman, B. D., & Mizel, V. J. (1968). On the general theory of fading memory. Archive for Rational Mechanics and Analysis, 29, 18–31.MATHMathSciNet Coleman, B. D., & Mizel, V. J. (1968). On the general theory of fading memory. Archive for Rational Mechanics and Analysis, 29, 18–31.MATHMathSciNet
go back to reference Coleman, B. D., & Noll, W. (1961). Foundations of linear viscoelasticity. Reviews of Modern Physics, 33(2), 239–249.MATHMathSciNet Coleman, B. D., & Noll, W. (1961). Foundations of linear viscoelasticity. Reviews of Modern Physics, 33(2), 239–249.MATHMathSciNet
go back to reference Coleman, B. D., & Noll, W. (1964). Simple fluids with fading memory. In M. Reiner & D. Abir (Eds.), Second-order effects in elasticity, plasticity and fluid dynamics (pp. 530–551). New York: Pergamon Press. Coleman, B. D., & Noll, W. (1964). Simple fluids with fading memory. In M. Reiner & D. Abir (Eds.), Second-order effects in elasticity, plasticity and fluid dynamics (pp. 530–551). New York: Pergamon Press.
go back to reference Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003a). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. theory. Journal of Biomechanical Engineering, 125, 94–99. Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003a). Experimentally tractable, pseudo-elastic constitutive law for biomembranes: I. theory. Journal of Biomechanical Engineering, 125, 94–99.
go back to reference Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003b) Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II application. Journal of Biomechanical Engineering, 125, 100–105. Criscione, J. C., Sacks, M. S., & Hunter, W. C. (2003b) Experimentally tractable, pseudo-elastic constitutive law for biomembranes: II application. Journal of Biomechanical Engineering, 125, 100–105.
go back to reference Demiray, H. (1972). A note on the elasticity of soft biological tissues. Journal of Biomechanics, 5, 309–311. Demiray, H. (1972). A note on the elasticity of soft biological tissues. Journal of Biomechanics, 5, 309–311.
go back to reference Dienes, J. K. (1979). On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32, 217–232.MATHMathSciNet Dienes, J. K. (1979). On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica, 32, 217–232.MATHMathSciNet
go back to reference Dienes, J. K. (2003). Finite deformation of materials with an ensemble of defects. Technical report LA–13994–MS. Los Alamos: Los Alamos National Laboratory. Dienes, J. K. (2003). Finite deformation of materials with an ensemble of defects. Technical report LA–13994–MS. Los Alamos: Los Alamos National Laboratory.
go back to reference Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Lecture notes in mathematics (Vol. 2004). Heidelberg: Springer. Diethelm, K. (2010). The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Lecture notes in mathematics (Vol. 2004). Heidelberg: Springer.
go back to reference Diethelm, K., & Freed, A. D. (2006). An efficient algorithm for the evaluation of convolution integrals. Computers and Mathematics with Applications, 51, 51–72.MATHMathSciNet Diethelm, K., & Freed, A. D. (2006). An efficient algorithm for the evaluation of convolution integrals. Computers and Mathematics with Applications, 51, 51–72.MATHMathSciNet
go back to reference Diethelm, K., Ford, N. J., Freed, A. D., & Luchko, Y. (2005). Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering, 194, 743–773.MATHMathSciNet Diethelm, K., Ford, N. J., Freed, A. D., & Luchko, Y. (2005). Algorithms for the fractional calculus: A selection of numerical methods. Computer Methods in Applied Mechanics and Engineering, 194, 743–773.MATHMathSciNet
go back to reference Doehring, T. C., Freed, A. D., Carew, E. O., & Vesely, I. (2005). Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. Journal of Biomechanical Engineering, 127, 700–708. Doehring, T. C., Freed, A. D., Carew, E. O., & Vesely, I. (2005). Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. Journal of Biomechanical Engineering, 127, 700–708.
go back to reference Dokos, S., LeGrice, I. J., Smaill, B. H., Kar, J., & Young, A. A. (2000). A triaxial-measurement shear-test device for soft biological tissues. Journal of Biomechanical Engineering, 122, 471–478. Dokos, S., LeGrice, I. J., Smaill, B. H., Kar, J., & Young, A. A. (2000). A triaxial-measurement shear-test device for soft biological tissues. Journal of Biomechanical Engineering, 122, 471–478.
go back to reference Dokos, S., Smaill, B. H., Young, A. A., & LeGrice, I. J. (2002). Shear properties of passive ventricular myocardium. American Journal of Physiology–Heart and Circulatory Physiology, 283, H2650–H2659. Dokos, S., Smaill, B. H., Young, A. A., & LeGrice, I. J. (2002). Shear properties of passive ventricular myocardium. American Journal of Physiology–Heart and Circulatory Physiology, 283, H2650–H2659.
go back to reference Douglas, J. F. (2000). Polymer science applications of path-integration, integral equations, and fractional calculus. In R. Hilfer (Ed.), Applications of fractional calculus in physics (pp. 241–330). Singapore: World Scientific. Douglas, J. F. (2000). Polymer science applications of path-integration, integral equations, and fractional calculus. In R. Hilfer (Ed.), Applications of fractional calculus in physics (pp. 241–330). Singapore: World Scientific.
go back to reference Drucker, D. C. (1959). A definition of stable inelastic material. Journal of Applied Mechanics, 27, 101–106.MathSciNet Drucker, D. C. (1959). A definition of stable inelastic material. Journal of Applied Mechanics, 27, 101–106.MathSciNet
go back to reference Duenwald, S. E., Vanderby, R., Jr., & Lakes, R. S. (2010). Stress relaxation and recovery in tendon and ligament: Experiment and modeling. Biorheology, 47, 1–14. Duenwald, S. E., Vanderby, R., Jr., & Lakes, R. S. (2010). Stress relaxation and recovery in tendon and ligament: Experiment and modeling. Biorheology, 47, 1–14.
go back to reference Einstein, A. (1933). On the method of theoretical physics. New York: Oxford University Press. (The Herbert Spencer lecture delivered at Oxford, 10 June 1933) Einstein, A. (1933). On the method of theoretical physics. New York: Oxford University Press. (The Herbert Spencer lecture delivered at Oxford, 10 June 1933)
go back to reference Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1955). Higher transcendental functions. Bateman manuscript project (Vol. 2). New York: McGraw-Hill. Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1955). Higher transcendental functions. Bateman manuscript project (Vol. 2). New York: McGraw-Hill.
go back to reference Ericksen, J. L. (1958). Hypo-elastic potentials. Quarterly Journal of Mechanics and Applied Mathematics, 11, 67–72.MathSciNet Ericksen, J. L. (1958). Hypo-elastic potentials. Quarterly Journal of Mechanics and Applied Mathematics, 11, 67–72.MathSciNet
go back to reference Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). New York: Wiley. Ferry, J. D. (1980). Viscoelastic properties of polymers (3rd ed.). New York: Wiley.
go back to reference Finger, J. (1894). Über die allgemeinsten beziehungen zwischen endlichen deformationen und den zugehörigen spannungen in aeolotropen und isotropen substanzen. Sitzungsberichte der Akademie der Wissenschaften, Wien, 103, 1073–1100.MATH Finger, J. (1894). Über die allgemeinsten beziehungen zwischen endlichen deformationen und den zugehörigen spannungen in aeolotropen und isotropen substanzen. Sitzungsberichte der Akademie der Wissenschaften, Wien, 103, 1073–1100.MATH
go back to reference Fitzgerald, J. E. (1980). A tensorial Hencky measure of strain and strain rate for finite deformations. Journal of Applied Physics, 51, 5111–5115. Fitzgerald, J. E. (1980). A tensorial Hencky measure of strain and strain rate for finite deformations. Journal of Applied Physics, 51, 5111–5115.
go back to reference Flanagan, D. P., & Taylor, L. M. (1987). An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering, 62, 305–320.MATH Flanagan, D. P., & Taylor, L. M. (1987). An accurate numerical algorithm for stress integration with finite rotations. Computer Methods in Applied Mechanics and Engineering, 62, 305–320.MATH
go back to reference Ford, N. J., & Simpson, A. C. (2001). The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms, 26, 333–346.MATHMathSciNet Ford, N. J., & Simpson, A. C. (2001). The numerical solution of fractional differential equations: Speed versus accuracy. Numerical Algorithms, 26, 333–346.MATHMathSciNet
go back to reference Freed, A. D. (1995). Natural strain. Journal of Engineering Materials and Technology, 117, 379–385. Freed, A. D. (1995). Natural strain. Journal of Engineering Materials and Technology, 117, 379–385.
go back to reference Freed, A. D. (2008). Anisotropy in hypoelastic soft-tissue mechanics, I: Theory. Journal of Mechanics of Materials and Structures, 3(5), 911–928.MathSciNet Freed, A. D. (2008). Anisotropy in hypoelastic soft-tissue mechanics, I: Theory. Journal of Mechanics of Materials and Structures, 3(5), 911–928.MathSciNet
go back to reference Freed, A. D. (2009). Anisotropy in hypoelastic soft-tissue mechanics, II: Simple extensional experiments. Journal of Mechanics of Materials and Structures, 4(6), 1005–1025. Freed, A. D. (2009). Anisotropy in hypoelastic soft-tissue mechanics, II: Simple extensional experiments. Journal of Mechanics of Materials and Structures, 4(6), 1005–1025.
go back to reference Freed, A. D. (2010). Hypoelastic soft tissues, part I: Theory. Acta Mechanica, 213, 189–204.MATH Freed, A. D. (2010). Hypoelastic soft tissues, part I: Theory. Acta Mechanica, 213, 189–204.MATH
go back to reference Freed, A. D., & Diethelm, K. (2006). Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad. Biomechanics and Modeling in Mechanobiology, 5, 203–215. Freed, A. D., & Diethelm, K. (2006). Fractional calculus in biomechanics: A 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad. Biomechanics and Modeling in Mechanobiology, 5, 203–215.
go back to reference Freed, A. D., & Diethelm, K. (2007). Caputo derivatives in viscoelasticity: A non-linear finite-deformation theory for tissue. Fractional Calculus and Applied Analysis, 10(3), 219–248.MATHMathSciNet Freed, A. D., & Diethelm, K. (2007). Caputo derivatives in viscoelasticity: A non-linear finite-deformation theory for tissue. Fractional Calculus and Applied Analysis, 10(3), 219–248.MATHMathSciNet
go back to reference Freed, A. D., & Doehring, T. C. (2005). Elastic model for crimped collagen fibrils. Journal of Biomechanical Engineering, 127, 587–593. Freed, A. D., & Doehring, T. C. (2005). Elastic model for crimped collagen fibrils. Journal of Biomechanical Engineering, 127, 587–593.
go back to reference Freed, A. D., & Einstein, D. R. (2012). Hypo-elastic model for lung parenchyma. Biomechanics and Modeling in Mechanobiology, 11, 557–573. Freed, A. D., & Einstein, D. R. (2012). Hypo-elastic model for lung parenchyma. Biomechanics and Modeling in Mechanobiology, 11, 557–573.
go back to reference Freed, A. D., & Einstein, D. R. (2013). An implicit elastic theory for lung parenchyma. International Journal of Engineering Science, 62, 31–47.MathSciNet Freed, A. D., & Einstein, D. R. (2013). An implicit elastic theory for lung parenchyma. International Journal of Engineering Science, 62, 31–47.MathSciNet
go back to reference Freed, A. D., Einstein, D. R., & Sacks, M. S. (2010). Hypoelastic soft tissues, part II: In-plane biaxial experiments. Acta Mechanica, 213, 205–222.MATH Freed, A. D., Einstein, D. R., & Sacks, M. S. (2010). Hypoelastic soft tissues, part II: In-plane biaxial experiments. Acta Mechanica, 213, 205–222.MATH
go back to reference Freed, A. D., Einstein, D. R., & Vesely, I. (2005). Invariant formulation for dispersed transverse isotropy in aortic heart valves: An efficient means for modeling fiber splay. Biomechanics and Modeling in Mechanobiology, 4, 100–117. Freed, A. D., Einstein, D. R., & Vesely, I. (2005). Invariant formulation for dispersed transverse isotropy in aortic heart valves: An efficient means for modeling fiber splay. Biomechanics and Modeling in Mechanobiology, 4, 100–117.
go back to reference Fulchiron, R., Verney, V., Cassagnau, P., Michael, A., Levoir, P., & Aubard, J. (1993). Deconvolution of polymer melt stress relaxation by the Padé-Laplace method. Journal of Rheology, 37, 17–34. Fulchiron, R., Verney, V., Cassagnau, P., Michael, A., Levoir, P., & Aubard, J. (1993). Deconvolution of polymer melt stress relaxation by the Padé-Laplace method. Journal of Rheology, 37, 17–34.
go back to reference Fung, Y. C. (1967). Elasticity of soft tissues in simple elongation. American Journal of Physiology, 28, 1532–1544. Fung, Y. C. (1967). Elasticity of soft tissues in simple elongation. American Journal of Physiology, 28, 1532–1544.
go back to reference Fung, Y. -C. (1971). Stress–strain-history relations of soft tissues in simple elongation. In Y. -C. Fung, N. Perrone, & M. Anliker (Eds.), Biomechanics: Its foundations and objectives, chap. 7 (pp. 181–208). Englewood Cliffs: Prentice-Hall. Fung, Y. -C. (1971). Stress–strain-history relations of soft tissues in simple elongation. In Y. -C. Fung, N. Perrone, & M. Anliker (Eds.), Biomechanics: Its foundations and objectives, chap. 7 (pp. 181–208). Englewood Cliffs: Prentice-Hall.
go back to reference Fung, Y. -C. (1973). Biorheology of soft tissues. Biorheology, 10, 139–155. Fung, Y. -C. (1973). Biorheology of soft tissues. Biorheology, 10, 139–155.
go back to reference Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New York: Springer. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New York: Springer.
go back to reference Gent, A. N. (1996). A new constitutive relation for rubber. Rubber Chemsitry and Technology, 69, 59–61.MathSciNet Gent, A. N. (1996). A new constitutive relation for rubber. Rubber Chemsitry and Technology, 69, 59–61.MathSciNet
go back to reference Gittus, J. (1975). Creep, viscoelasticity and creep rupture in solids. New York: Halsted Press. Gittus, J. (1975). Creep, viscoelasticity and creep rupture in solids. New York: Halsted Press.
go back to reference Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley.MATH Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley.MATH
go back to reference Goldberg, D. E. (2002). The design of innovation: Lessons learned from and for competent genetic algorithms. Genetic algorithms and evolutionary computation (Vol. 7). Boston: Kluwer. Goldberg, D. E. (2002). The design of innovation: Lessons learned from and for competent genetic algorithms. Genetic algorithms and evolutionary computation (Vol. 7). Boston: Kluwer.
go back to reference Gorenflo, R., & Rutman, R. (1995). On ultraslow and intermediate processes. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.) Transform methods and special functions, sofia 1994 (pp. 61–81). Singapore: Science Culture Technology Publishing. Gorenflo, R., & Rutman, R. (1995). On ultraslow and intermediate processes. In P. Rusev, I. Dimovski, & V. Kiryakova (Eds.) Transform methods and special functions, sofia 1994 (pp. 61–81). Singapore: Science Culture Technology Publishing.
go back to reference Gorenflo, R., Loutchko, I., & Luchko, Y. (2002). Computation of the Mittag-Leffler function E_α, β(z) and its derivatives. Fractional Calculus and Applied Analysis, 5, 491–518. [Erratum: 6, 111–112 (2003)] Gorenflo, R., Loutchko, I., & Luchko, Y. (2002). Computation of the Mittag-Leffler function E_α, β(z) and its derivatives. Fractional Calculus and Applied Analysis, 5, 491–518. [Erratum: 6, 111–112 (2003)]
go back to reference Graham, A. (1981). Kronecker products and matrix calculus: With applications. Ellis Horwood series in mathematics and its applications. Chichester: Ellis Horwood Limited.MATH Graham, A. (1981). Kronecker products and matrix calculus: With applications. Ellis Horwood series in mathematics and its applications. Chichester: Ellis Horwood Limited.MATH
go back to reference Green, G. (1841). On the propagation of light in crystallized media. Transactions of the Cambridge Philosophical Society, 7, 121–140. Green, G. (1841). On the propagation of light in crystallized media. Transactions of the Cambridge Philosophical Society, 7, 121–140.
go back to reference Gross, B. (1937). Über die anomalien der festen dielektrika. Zeitschrift für Physik, 107, 217–234. Gross, B. (1937). Über die anomalien der festen dielektrika. Zeitschrift für Physik, 107, 217–234.
go back to reference Gross, B. (1938). Zum verlauf des einsatzstromes im anomalen dielektrikum. Zeitschrift für Physik, 108, 598–608. Gross, B. (1938). Zum verlauf des einsatzstromes im anomalen dielektrikum. Zeitschrift für Physik, 108, 598–608.
go back to reference Gross, B. (1947). On creep and relaxation. Journal of Applied Physics, 18, 212–221. Gross, B. (1947). On creep and relaxation. Journal of Applied Physics, 18, 212–221.
go back to reference Gurtin, M. E. (1981). An introduction to continuum mechanics. Mathematics in science and engineering (Vol. 158). New York: Academic. Gurtin, M. E. (1981). An introduction to continuum mechanics. Mathematics in science and engineering (Vol. 158). New York: Academic.
go back to reference Gurtin, M. E., Fried, E., & Anand, L. (2010). The mechanics and thermodynamics of continua. Cambridge: Cambridge University Press. Gurtin, M. E., Fried, E., & Anand, L. (2010). The mechanics and thermodynamics of continua. Cambridge: Cambridge University Press.
go back to reference Guth, E., Wack, P. E., & Anthony, R. L. (1946). Significance of the equation of state for rubber. Journal of Applied Physics, 17, 347–351. Guth, E., Wack, P. E., & Anthony, R. L. (1946). Significance of the equation of state for rubber. Journal of Applied Physics, 17, 347–351.
go back to reference Hart, J. F., Cheney, E. W., Lawson, C. L., Maehly, H. J., Mesztenyi, C. K., Rice, J. R., et al. (1968). Computer approximations. The SIAM series in applied mathematics. New York: Wiley.MATH Hart, J. F., Cheney, E. W., Lawson, C. L., Maehly, H. J., Mesztenyi, C. K., Rice, J. R., et al. (1968). Computer approximations. The SIAM series in applied mathematics. New York: Wiley.MATH
go back to reference Havner, K. S. (1992). Finite plastic deformation of crystalline solids. Cambridge monographs on mechanics and applied mathematics. Cambridge: Cambridge University Press.MATH Havner, K. S. (1992). Finite plastic deformation of crystalline solids. Cambridge monographs on mechanics and applied mathematics. Cambridge: Cambridge University Press.MATH
go back to reference Hencky, H. (1928). Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik, 9, 215–220. (Translated from German to English in NASA TT-21602, Washington DC, 1994) Hencky, H. (1928). Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik, 9, 215–220. (Translated from German to English in NASA TT-21602, Washington DC, 1994)
go back to reference Hencky, H. (1931). The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. Journal of Rheology, 2, 169–176. Hencky, H. (1931). The law of elasticity for isotropic and quasi-isotropic substances by finite deformations. Journal of Rheology, 2, 169–176.
go back to reference Herrmann, R. (2011). Fractional calculus: An introduction for physicsts. Singapore: World Scientific. Herrmann, R. (2011). Fractional calculus: An introduction for physicsts. Singapore: World Scientific.
go back to reference Hilfer, R., & Seybold, H. J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms and Special Functions, 17, 637–652.MATHMathSciNet Hilfer, R., & Seybold, H. J. (2006). Computation of the generalized Mittag-Leffler function and its inverse in the complex plane. Integral Transforms and Special Functions, 17, 637–652.MATHMathSciNet
go back to reference Hill, R. (1957). On uniqueness and stability in the theory of finite elastic strain. Journal of the Mechanics and Physics of Solids, 5, 229–241.MATHMathSciNet Hill, R. (1957). On uniqueness and stability in the theory of finite elastic strain. Journal of the Mechanics and Physics of Solids, 5, 229–241.MATHMathSciNet
go back to reference Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6, 236–249.MATH Hill, R. (1958). A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 6, 236–249.MATH
go back to reference Hill, R. (1968). On constitutive inequalites for simple materials I. Journal of the Mechanics and Physics of Solids, 16, 229–242.MATH Hill, R. (1968). On constitutive inequalites for simple materials I. Journal of the Mechanics and Physics of Solids, 16, 229–242.MATH
go back to reference Hoger, A. (1986). The material time derivative of logarithmic strain. International Journal of Solids and Structures, 22, 1019–1032.MATHMathSciNet Hoger, A. (1986). The material time derivative of logarithmic strain. International Journal of Solids and Structures, 22, 1019–1032.MATHMathSciNet
go back to reference Holzapfel, G. A. (2000). Nonlinear solid mechanics: A continuum approach for engineering. Chichester: Wiley. Holzapfel, G. A. (2000). Nonlinear solid mechanics: A continuum approach for engineering. Chichester: Wiley.
go back to reference Humphrey, J. D. (2002a) Cardiovascular solid mechanics; cells, tissues, and organs. New York: Springer. Humphrey, J. D. (2002a) Cardiovascular solid mechanics; cells, tissues, and organs. New York: Springer.
go back to reference Humphrey, J. D. (2002b) Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society, London A, 459, 3–46.MathSciNet Humphrey, J. D. (2002b) Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society, London A, 459, 3–46.MathSciNet
go back to reference Humphrey, J. D. (2008). Biological soft tissues. In W. N. J. Sharpe (Ed.), Springer handbook of experimental solid mechanics (pp. 169–185). New York: Springer. Humphrey, J. D. (2008). Biological soft tissues. In W. N. J. Sharpe (Ed.), Springer handbook of experimental solid mechanics (pp. 169–185). New York: Springer.
go back to reference James, H. M., & Guth, E. (1943). Theory of the elastic properties of rubber. The Journal of Chemical Physics, 11, 455–481. James, H. M., & Guth, E. (1943). Theory of the elastic properties of rubber. The Journal of Chemical Physics, 11, 455–481.
go back to reference James, H. M., & Guth, E. (1944). Theory of the elasticity of rubber. Journal of Applied Physics, 15, 294–303. James, H. M., & Guth, E. (1944). Theory of the elasticity of rubber. Journal of Applied Physics, 15, 294–303.
go back to reference James, H. M., & Guth, E. (1947). Theory of the increase in rigidity of rubber during cure. The Journal of Chemical Physics, 15, 669–683. James, H. M., & Guth, E. (1947). Theory of the increase in rigidity of rubber during cure. The Journal of Chemical Physics, 15, 669–683.
go back to reference Jaumann, G. (1911). Geschlossenes system physikalischer und chemischer differentialgesetze. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-naturwissenschaftliche Klasse, 120, 385–530.MATH Jaumann, G. (1911). Geschlossenes system physikalischer und chemischer differentialgesetze. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften: Mathematisch-naturwissenschaftliche Klasse, 120, 385–530.MATH
go back to reference Kachanov, L. M. (1971). Foundations of the theory of plasticity. North-Holland series in applied mathematics and mechanics (Vol. 12). Amsterdam: North-Holland Publishing. Kachanov, L. M. (1971). Foundations of the theory of plasticity. North-Holland series in applied mathematics and mechanics (Vol. 12). Amsterdam: North-Holland Publishing.
go back to reference Kaye, A. (1962). A non-Newtonian flow in incompressible fluids. Technical report 134. Cranfield: The College of Aeronautics. Kaye, A. (1962). A non-Newtonian flow in incompressible fluids. Technical report 134. Cranfield: The College of Aeronautics.
go back to reference Kirchhoff, G. (1852). Über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzungsberichte der Akademie der Wissenschaften, Wien, 9, 763–773. Kirchhoff, G. (1852). Über die Gleichungen des Gleichgewichtes eines elastischen Körpers bei nicht unendlich kleinen Verschiebungen seiner Theile. Sitzungsberichte der Akademie der Wissenschaften, Wien, 9, 763–773.
go back to reference Kohlrausch, R. (1847). Ueber das Dellmann’sche Elektrometer. Annalen der Physik und Chemie, 72(11), 353–405. Kohlrausch, R. (1847). Ueber das Dellmann’sche Elektrometer. Annalen der Physik und Chemie, 72(11), 353–405.
go back to reference Lai, W. M., Rubin, D., & Krempl, E. (1974). Introduction to continuum mechanics. Pergamon Unified Engineering Series. New York: Pergamon Press.MATH Lai, W. M., Rubin, D., & Krempl, E. (1974). Introduction to continuum mechanics. Pergamon Unified Engineering Series. New York: Pergamon Press.MATH
go back to reference Lakes, R. S. (1998). Viscoelastic solids. CRC Mechanical Engineering Series. Boca Raton: CRC Press. Lakes, R. S. (1998). Viscoelastic solids. CRC Mechanical Engineering Series. Boca Raton: CRC Press.
go back to reference Leonov, A. I. (1996). On the constitutive equations for nonisothermal bulk relaxation. Macromolecules, 29, 8383–8386. Leonov, A. I. (1996). On the constitutive equations for nonisothermal bulk relaxation. Macromolecules, 29, 8383–8386.
go back to reference Leonov, A. (2000). On the conditions of potentiality in finite elasticity and hypo-elasticity. International Journal of Solids and Structures, 37, 2565–2576.MATHMathSciNet Leonov, A. (2000). On the conditions of potentiality in finite elasticity and hypo-elasticity. International Journal of Solids and Structures, 37, 2565–2576.MATHMathSciNet
go back to reference Lillie, M. A., & Gosline, J. M. (1996). Swelling and viscoelastic properties of osmotically stressed elastin. Biopolymers, 39, 641–652. Lillie, M. A., & Gosline, J. M. (1996). Swelling and viscoelastic properties of osmotically stressed elastin. Biopolymers, 39, 641–652.
go back to reference Linke, W. A., & Grützner, A. (2008). Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflügers Archiv – European Journal of Physiology, 456, 101–115. Linke, W. A., & Grützner, A. (2008). Pulling single molecules of titin by AFM—recent advances and physiological implications. Pflügers Archiv – European Journal of Physiology, 456, 101–115.
go back to reference Lodge, A. S. (1956). A network theory of flow birefringence and stress in concentrated polymer solutions. Transactions of the Faraday Society, 52, 120–130. Lodge, A. S. (1956). A network theory of flow birefringence and stress in concentrated polymer solutions. Transactions of the Faraday Society, 52, 120–130.
go back to reference Lodge, A. S. (1958). A network theory of constrained elastic recovery in concentrated polymer solutions. Rheologica Acta, 1, 158–163. Lodge, A. S. (1958). A network theory of constrained elastic recovery in concentrated polymer solutions. Rheologica Acta, 1, 158–163.
go back to reference Lodge, A. S. (1964). Elastic liquids: An introductory vector treatment of finite-strain polymer rheology. London: Academic. Lodge, A. S. (1964). Elastic liquids: An introductory vector treatment of finite-strain polymer rheology. London: Academic.
go back to reference Lodge, A. S. (1974). Body tensor fields in continuum mechanics: With applications to polymer rheology. New York: Academic. Lodge, A. S. (1974). Body tensor fields in continuum mechanics: With applications to polymer rheology. New York: Academic.
go back to reference Lodge, A. S. (1984). A classification of constitutive equations based on stress relaxation predictions for the single-jump shear strain experiment. Journal of Non-Newtonian Fluid Mechanics, 14, 67–83.MATH Lodge, A. S. (1984). A classification of constitutive equations based on stress relaxation predictions for the single-jump shear strain experiment. Journal of Non-Newtonian Fluid Mechanics, 14, 67–83.MATH
go back to reference Lodge, A. S. (1999). An introduction to elastomer molecular network theory. Madison: Bannatek Press. Lodge, A. S. (1999). An introduction to elastomer molecular network theory. Madison: Bannatek Press.
go back to reference Lodge, A. S., McLeod, J. B., & Nohel, J. A. (1978). A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology. Proceedings of the Royal Society of Edinburgh, 80A, 99–137.MathSciNet Lodge, A. S., McLeod, J. B., & Nohel, J. A. (1978). A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology. Proceedings of the Royal Society of Edinburgh, 80A, 99–137.MathSciNet
go back to reference Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press.MATH Mainardi, F. (2010). Fractional calculus and waves in linear viscoelasticity. London: Imperial College Press.MATH
go back to reference Mainardi, F., & Gorenflo, R. (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis, 10, 269–308.MATHMathSciNet Mainardi, F., & Gorenflo, R. (2007). Time-fractional derivatives in relaxation processes: A tutorial survey. Fractional Calculus and Applied Analysis, 10, 269–308.MATHMathSciNet
go back to reference Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall series in engineering of the physical sciences. Englewood Cliffs: Prentice-Hall. Malvern, L. E. (1969). Introduction to the mechanics of a continuous medium. Prentice-Hall series in engineering of the physical sciences. Englewood Cliffs: Prentice-Hall.
go back to reference Marsden, J. E., & Hughes, T. J. R. (1983). Mathematic foundations of elasticity. Englewood Cliffs: Prentice-Hall. Republished by Mineola, NY: Dover Publications, 1994. Marsden, J. E., & Hughes, T. J. R. (1983). Mathematic foundations of elasticity. Englewood Cliffs: Prentice-Hall. Republished by Mineola, NY: Dover Publications, 1994.
go back to reference Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical Transactions of the Royal Society, London, 157, 49–88. Maxwell, J. C. (1867). On the dynamical theory of gases. Philosophical Transactions of the Royal Society, London, 157, 49–88.
go back to reference McLoughlin, J. R., & Tobolsky, A. V. (1952). The viscoelastic behavior of polymethyl methacrylate. Journal of Colloid and Interface Science, 7, 555–568. McLoughlin, J. R., & Tobolsky, A. V. (1952). The viscoelastic behavior of polymethyl methacrylate. Journal of Colloid and Interface Science, 7, 555–568.
go back to reference Meerschaert, M. M., & Sikorskii, A. (2012). Stochastic models for fractional calculus. De Gruyter studies in mathematics (Vol. 43). Berlin: De Gruyter. Meerschaert, M. M., & Sikorskii, A. (2012). Stochastic models for fractional calculus. De Gruyter studies in mathematics (Vol. 43). Berlin: De Gruyter.
go back to reference Metzler, R., & Klafter, J. (2002). From stretched exponential to inverse power-law: Fractional dynamics, Cole-Cole relaxation processes, and beyond. Journal of Non-crystalline Solids, 305, 81–87. Metzler, R., & Klafter, J. (2002). From stretched exponential to inverse power-law: Fractional dynamics, Cole-Cole relaxation processes, and beyond. Journal of Non-crystalline Solids, 305, 81–87.
go back to reference Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: John Wiley.MATH Miller, K. S., & Ross, B. (1993). An introduction to the fractional calculus and fractional differential equations. New York: John Wiley.MATH
go back to reference Miller-Young, J. E., Duncan, N. A., & Baroud, G. (2002). Material properties of the human calcaneal fat pad in compression: Experiment and theory. Journal of Biomechanics, 35, 1523–1531. Miller-Young, J. E., Duncan, N. A., & Baroud, G. (2002). Material properties of the human calcaneal fat pad in compression: Experiment and theory. Journal of Biomechanics, 35, 1523–1531.
go back to reference Mittag-Leffler, G. (1904). Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica, 29, 101–168.MathSciNet Mittag-Leffler, G. (1904). Sur la représentation analytique d’une branche uniforme d’une fonction monogène. Acta Mathematica, 29, 101–168.MathSciNet
go back to reference Moon, H., & Truesdell, C. (1974). Interpretations of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid. Archive for Rational Mechanics and Analysis, 55, 1–17.MATHMathSciNet Moon, H., & Truesdell, C. (1974). Interpretations of adscititious inequalities through the effects pure shear stress produces upon an isotropic elastic solid. Archive for Rational Mechanics and Analysis, 55, 1–17.MATHMathSciNet
go back to reference Mooney, M. (1940). A theory of large elastic deformations. Journal of Applied Physics, 11, 582–592.MATH Mooney, M. (1940). A theory of large elastic deformations. Journal of Applied Physics, 11, 582–592.MATH
go back to reference Morgan, F. R. (1960). The mechanical properties of collagen fibres: Stress-strain curves. Journal of the International Society of Leather Trades’ Chemists, 44, 170–182. Morgan, F. R. (1960). The mechanical properties of collagen fibres: Stress-strain curves. Journal of the International Society of Leather Trades’ Chemists, 44, 170–182.
go back to reference Moyer, A. E. (1977). Robert Hooke’s ambiguous presentation of “Hooke’s law”. Isis, 68(242), 266–275. Moyer, A. E. (1977). Robert Hooke’s ambiguous presentation of “Hooke’s law”. Isis, 68(242), 266–275.
go back to reference Nadeau, J. C., & Ferrari, M. (1998). Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. Journal of Elasticity, 52, 43–61.MATHMathSciNet Nadeau, J. C., & Ferrari, M. (1998). Invariant tensor-to-matrix mappings for evaluation of tensorial expressions. Journal of Elasticity, 52, 43–61.MATHMathSciNet
go back to reference Neubert, H. K. P. (1963). A simple model representing internal damping in solid matrials. The Aeronautical Quarterly, 14, 187–210. Neubert, H. K. P. (1963). A simple model representing internal damping in solid matrials. The Aeronautical Quarterly, 14, 187–210.
go back to reference Nicholson, D. W. (2008). Finite element analysis: Thermomechanics of solids (2nd ed.). Boca Raton: CRC Press. Nicholson, D. W. (2008). Finite element analysis: Thermomechanics of solids (2nd ed.). Boca Raton: CRC Press.
go back to reference Nicholson, D. W. (2013). An analysis of invariant convexity in hyperelasticity. Submitted to International Journal of Engineering Science. Nicholson, D. W. (2013). An analysis of invariant convexity in hyperelasticity. Submitted to International Journal of Engineering Science.
go back to reference Nicholson, D. W., & Lin, B. (1998). On the tangent modulus tensor in hyperelasticity. ACTA Mechanica, 131, 121–131.MATHMathSciNet Nicholson, D. W., & Lin, B. (1998). On the tangent modulus tensor in hyperelasticity. ACTA Mechanica, 131, 121–131.MATHMathSciNet
go back to reference Nicholson, D. W., & Lin, B. (1999). Extensions of Kronecker product algebra with applications in continuum and computational mechanics. ACTA Mechanica, 136, 223–241.MATHMathSciNet Nicholson, D. W., & Lin, B. (1999). Extensions of Kronecker product algebra with applications in continuum and computational mechanics. ACTA Mechanica, 136, 223–241.MATHMathSciNet
go back to reference Noll, W. (1955). On the continuity of the solid and fluid states. Journal of Rational Mechanics and Analysis, 4, 3–81.MATHMathSciNet Noll, W. (1955). On the continuity of the solid and fluid states. Journal of Rational Mechanics and Analysis, 4, 3–81.MATHMathSciNet
go back to reference Noll, W. (1958). A mathematical theory of the mechanical behavior of continuous media. Archive for Rational Mechanics and Analysis, 2, 197–226.MATH Noll, W. (1958). A mathematical theory of the mechanical behavior of continuous media. Archive for Rational Mechanics and Analysis, 2, 197–226.MATH
go back to reference Noll, W. (1972). A new mathematical theory of simple materials. Archive for Rational Mechanics and Analysis, 48, 1–50.MATHMathSciNet Noll, W. (1972). A new mathematical theory of simple materials. Archive for Rational Mechanics and Analysis, 48, 1–50.MATHMathSciNet
go back to reference Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. Materials science series. New York: Academic. Nowick, A. S., & Berry, B. S. (1972). Anelastic relaxation in crystalline solids. Materials science series. New York: Academic.
go back to reference Nutting, P. G. (1921). A new general law of deformation. Journal of the Franklin Institute, 191, 679–685. Nutting, P. G. (1921). A new general law of deformation. Journal of the Franklin Institute, 191, 679–685.
go back to reference Ogden, R. W. (1972). Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society, London A, 326, 565–584.MATH Ogden, R. W. (1972). Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society, London A, 326, 565–584.MATH
go back to reference Ogden, R. W. (1984). Non-linear elastic deformations. New York: John Wiley. (Republished by Mineola, NY: Dover Publications, 1997) Ogden, R. W. (1984). Non-linear elastic deformations. New York: John Wiley. (Republished by Mineola, NY: Dover Publications, 1997)
go back to reference Oldham, K. B., & Spanier, J. (1974). The fractional calculus: Theory and applications of differentiation and integration to arbitrary order. New York: Academic. (Republished by Mineola, NY: Dover Publications, revised, 2006) Oldham, K. B., & Spanier, J. (1974). The fractional calculus: Theory and applications of differentiation and integration to arbitrary order. New York: Academic. (Republished by Mineola, NY: Dover Publications, revised, 2006)
go back to reference Oldroyd, J. G. (1950). On the formulation of rheological equations of state. Proceedings of the Royal Society, London A, 200, 523–541.MATHMathSciNet Oldroyd, J. G. (1950). On the formulation of rheological equations of state. Proceedings of the Royal Society, London A, 200, 523–541.MATHMathSciNet
go back to reference Oldroyd, J. G. (1970). Equations of state of continuous matter in general relativity. Proceedings of the Royal Society, London A, 316, 1–28.MathSciNet Oldroyd, J. G. (1970). Equations of state of continuous matter in general relativity. Proceedings of the Royal Society, London A, 316, 1–28.MathSciNet
go back to reference Park, S. W., & Schapery, R. A. (1999). Methods of interconversion between linear viscoelastic material functions, part I: A numerical method based on Prony series. International Journal of Solids and Structures, 36, 1653–1675.MATH Park, S. W., & Schapery, R. A. (1999). Methods of interconversion between linear viscoelastic material functions, part I: A numerical method based on Prony series. International Journal of Solids and Structures, 36, 1653–1675.MATH
go back to reference Phan-Thien, N. (2002). Understanding viscoelasticity: Basics of rheologoy. Berlin: Springer. Phan-Thien, N. (2002). Understanding viscoelasticity: Basics of rheologoy. Berlin: Springer.
go back to reference Piola, G. (1833). La meccanica dé corpi naturalmente estesi: Trattata col calcolo delle variazioni. Opuscoli Matematici e Fisici di Diversi Autori, 1, 201–236. Piola, G. (1833). La meccanica dé corpi naturalmente estesi: Trattata col calcolo delle variazioni. Opuscoli Matematici e Fisici di Diversi Autori, 1, 201–236.
go back to reference Pipkin, A. C. (1972). Lectures on viscoelasticity theory. Applied mathematical sciences (Vol. 7). New York: Springer. Pipkin, A. C. (1972). Lectures on viscoelasticity theory. Applied mathematical sciences (Vol. 7). New York: Springer.
go back to reference Pipkin, A. C., & Rogers, T. G. (1968). A non-linear integral representation for viscoelastic behaviour. Journal of the Mechanics and Physics of Solids, 16, 59–72.MATH Pipkin, A. C., & Rogers, T. G. (1968). A non-linear integral representation for viscoelastic behaviour. Journal of the Mechanics and Physics of Solids, 16, 59–72.MATH
go back to reference Podlubny, I. (1999). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering (Vol. 198). San Diego: Academic. Podlubny, I. (1999). Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Mathematics in science and engineering (Vol. 198). San Diego: Academic.
go back to reference Polyanin, A. D., & Zaitsev, V. F. (2003). Handbook of exact solutions for ordinary differential equations (2nd ed.). Boca Raton: Chapman & Hall/CRC.MATH Polyanin, A. D., & Zaitsev, V. F. (2003). Handbook of exact solutions for ordinary differential equations (2nd ed.). Boca Raton: Chapman & Hall/CRC.MATH
go back to reference Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipies: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipies: The art of scientific computing (3rd ed.). Cambridge: Cambridge University Press.
go back to reference Puso, M. A., & Weiss, J. A. (1998). Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. Journal of Biomechanical Engineering, 120, 62–70. Puso, M. A., & Weiss, J. A. (1998). Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. Journal of Biomechanical Engineering, 120, 62–70.
go back to reference Rajagopal, K. R. (2003). On implicit constitutive theories. Applications of Mathematics, 48(4), 279–319.MATHMathSciNet Rajagopal, K. R. (2003). On implicit constitutive theories. Applications of Mathematics, 48(4), 279–319.MATHMathSciNet
go back to reference Rajagopal, K. R. (2011a) Conspectus of concepts of elasticity. Mathematics and Mechanics of Solids, 16, 536–562.MATHMathSciNet Rajagopal, K. R. (2011a) Conspectus of concepts of elasticity. Mathematics and Mechanics of Solids, 16, 536–562.MATHMathSciNet
go back to reference Rajagopal, K. R. (2011b) On the cavalier attitude towards referencing. International Journal of Engineering Science. In press. Rajagopal, K. R. (2011b) On the cavalier attitude towards referencing. International Journal of Engineering Science. In press.
go back to reference Rajagopal, K. R., & Srinivasa, A. R. (2007). On the response of non-dissipative solids. Proceedings of the Royal Society, London A, 463, 357–367.MATHMathSciNet Rajagopal, K. R., & Srinivasa, A. R. (2007). On the response of non-dissipative solids. Proceedings of the Royal Society, London A, 463, 357–367.MATHMathSciNet
go back to reference Rajagopal, K. R., & Srinivasa, A. R. (2009). On a class of non-dissipative materials that are not hyperelastic. Proceedings of the Royal Society, London A, 465, 493–500.MATHMathSciNet Rajagopal, K. R., & Srinivasa, A. R. (2009). On a class of non-dissipative materials that are not hyperelastic. Proceedings of the Royal Society, London A, 465, 493–500.MATHMathSciNet
go back to reference Rajagopal, K. R., & Wineman, A. (2010). Applications of viscoelastic clock models in biomechanics. Acta Mechanica, 213, 255–266.MATH Rajagopal, K. R., & Wineman, A. (2010). Applications of viscoelastic clock models in biomechanics. Acta Mechanica, 213, 255–266.MATH
go back to reference Rao, I. J., & Rajagopal, K. R. (2007). The status of the K-BKZ model within the framework of materials with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 141, 79–84.MATH Rao, I. J., & Rajagopal, K. R. (2007). The status of the K-BKZ model within the framework of materials with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 141, 79–84.MATH
go back to reference Rivlin, R. S., & Saunders, D. W. (1951). Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philosophical Transactions of the Royal Society, London, A 243, 251–288. Rivlin, R. S., & Saunders, D. W. (1951). Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philosophical Transactions of the Royal Society, London, A 243, 251–288.
go back to reference Rivlin, R. S., & Smith, G. F. (1969). Orthogonal integrity basis for N symmetric matrices. In D. Abir (Ed.), Contributions to mechanics (pp. 121–141). New York: Pergamon Press. Rivlin, R. S., & Smith, G. F. (1969). Orthogonal integrity basis for N symmetric matrices. In D. Abir (Ed.), Contributions to mechanics (pp. 121–141). New York: Pergamon Press.
go back to reference Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280. Rouse, P. E. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. Journal of Chemical Physics, 21, 1272–1280.
go back to reference Sacks, M. S. (2000). Biaxial mechanical evaluation of planar biological materials. Journal of Elasticity, 61, 199–246.MATH Sacks, M. S. (2000). Biaxial mechanical evaluation of planar biological materials. Journal of Elasticity, 61, 199–246.MATH
go back to reference Sacks, M. S., & Sun, W. (2003). Multiaxial mechanical behavior of biological materials. Annual Review of Biomedical Engineering, 5, 251–284. Sacks, M. S., & Sun, W. (2003). Multiaxial mechanical behavior of biological materials. Annual Review of Biomedical Engineering, 5, 251–284.
go back to reference Samko, S. G., Kilbas, A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Yverdon: Gordon and Breach.MATH Samko, S. G., Kilbas, A., & Marichev, O. I. (1993). Fractional integrals and derivatives: Theory and applications. Yverdon: Gordon and Breach.MATH
go back to reference Schapery, R. A., & Park, S. W. (1999). Methods of interconversion between linear viscoelastic material functions, part II: An approximate analytical method. International Journal of Solids and Structures, 36, 1677–1699.MATH Schapery, R. A., & Park, S. W. (1999). Methods of interconversion between linear viscoelastic material functions, part II: An approximate analytical method. International Journal of Solids and Structures, 36, 1677–1699.MATH
go back to reference Scott Blair, G. W. (1944). Analytical and integrative aspects of the stress-strain-time problem. Journal of Scientific Instruments, 21, 80–84. Scott Blair, G. W. (1944). Analytical and integrative aspects of the stress-strain-time problem. Journal of Scientific Instruments, 21, 80–84.
go back to reference Signorini, A. (1930). Sulle deformazioni thermoelastiche finite. In C. W. Oseen, & W. Weibull (Eds.), Proceedings of the 3rd International Congress for Applied Mechanics (Vol. 2, pp. 80–89). Stockholm: Ab. Sveriges Litografiska Tryckerier. Signorini, A. (1930). Sulle deformazioni thermoelastiche finite. In C. W. Oseen, & W. Weibull (Eds.), Proceedings of the 3rd International Congress for Applied Mechanics (Vol. 2, pp. 80–89). Stockholm: Ab. Sveriges Litografiska Tryckerier.
go back to reference Simhambhatla, M., & Leonov, A. (1993). The extended Padé-Laplace method for efficient discretization of linear viscoelastic spectra. Rheologica Acta, 32, 589–600. Simhambhatla, M., & Leonov, A. (1993). The extended Padé-Laplace method for efficient discretization of linear viscoelastic spectra. Rheologica Acta, 32, 589–600.
go back to reference Simo, J. C., & Hughes, T. J. R. (1998) Computational inelasticity. Interdisciplinary applied mathematics (Vol. 7). New York: Springer. Simo, J. C., & Hughes, T. J. R. (1998) Computational inelasticity. Interdisciplinary applied mathematics (Vol. 7). New York: Springer.
go back to reference Smith, J. C., & Stamenović, D. (1986). Surface forces in lungs. I. Alveolar surface tension-lung volume relationships. Journal of Applied Physiology, 60(4), 1341–1350. Smith, J. C., & Stamenović, D. (1986). Surface forces in lungs. I. Alveolar surface tension-lung volume relationships. Journal of Applied Physiology, 60(4), 1341–1350.
go back to reference Sokolnikoff, I. S. (1964). Tensor analysis: Theory and applications to geometry and mechanics of continua (2nd ed.). Applied Mathematics Series. New York: Wiley.MATH Sokolnikoff, I. S. (1964). Tensor analysis: Theory and applications to geometry and mechanics of continua (2nd ed.). Applied Mathematics Series. New York: Wiley.MATH
go back to reference Spencer, A. J. M. (1972). Deformations in fibre-reinforced materials. Oxford science research papers. Oxford: Clarendon Press. Spencer, A. J. M. (1972). Deformations in fibre-reinforced materials. Oxford science research papers. Oxford: Clarendon Press.
go back to reference Stamenović, D., & Smith, J. C. (1986a). Surface forces in lungs. II. Microstructural mechanics and lung stability. Journal of Applied Physiology, 60(4), 1351–1357. Stamenović, D., & Smith, J. C. (1986a). Surface forces in lungs. II. Microstructural mechanics and lung stability. Journal of Applied Physiology, 60(4), 1351–1357.
go back to reference Stamenović, D., & Smith, J. C. (1986b). Surface forces in lungs. III. Alveolar surface tension and elastic properties of lung parenchyma. Journal of Applied Physiology, 60(4), 1358–1362. Stamenović, D., & Smith, J. C. (1986b). Surface forces in lungs. III. Alveolar surface tension and elastic properties of lung parenchyma. Journal of Applied Physiology, 60(4), 1358–1362.
go back to reference Stouffer, D. C. & Dame, L. T. (1996). Inelastic deformation of metals: Models, mechanical properties, and metallurgy. New York: Wiley Stouffer, D. C. & Dame, L. T. (1996). Inelastic deformation of metals: Models, mechanical properties, and metallurgy. New York: Wiley
go back to reference Stuebner, M. & Haider, M. A. (2010). A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage. Journal of Biomechanics, 43, 1835–1839. Stuebner, M. & Haider, M. A. (2010). A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage. Journal of Biomechanics, 43, 1835–1839.
go back to reference Thomas, T. Y. (1955). On the structure of the stress-strain relations. Proceedings of the National Academy of Sciences of the United States of America, 41, 716–719.MATHMathSciNet Thomas, T. Y. (1955). On the structure of the stress-strain relations. Proceedings of the National Academy of Sciences of the United States of America, 41, 716–719.MATHMathSciNet
go back to reference Tobolsky, A. V. (1956). Stress relaxation studies of the viscoelastic properties of polymers. Journal of Applied Physics, 27, 673–685. Tobolsky, A. V. (1956). Stress relaxation studies of the viscoelastic properties of polymers. Journal of Applied Physics, 27, 673–685.
go back to reference Tobolsky, A. V. (1960). Properties and structure of polymers. New York: Wiley Tobolsky, A. V. (1960). Properties and structure of polymers. New York: Wiley
go back to reference Tobolsky, A. V. & Mercurio, A. (1959). Oxidative degradation of polydiene vulcanizates. Journal of Applied Polymer Science, 2, 186–188. Tobolsky, A. V. & Mercurio, A. (1959). Oxidative degradation of polydiene vulcanizates. Journal of Applied Polymer Science, 2, 186–188.
go back to reference Treloar, L. R. G. (1975). The physics of rubber elasticity (3rd ed.). Oxford: Clarendon Press. Treloar, L. R. G. (1975). The physics of rubber elasticity (3rd ed.). Oxford: Clarendon Press.
go back to reference Truesdell, C. (1953). The mechanical foundations of elasticity and fluid dynamics. Journal of Rational Mechanics and Analysis, 2, 593–616.MATHMathSciNet Truesdell, C. (1953). The mechanical foundations of elasticity and fluid dynamics. Journal of Rational Mechanics and Analysis, 2, 593–616.MATHMathSciNet
go back to reference Truesdell, C. (1956). Hypo-elastic shear. Journal of Applied Physics, 27, 441–447.MathSciNet Truesdell, C. (1956). Hypo-elastic shear. Journal of Applied Physics, 27, 441–447.MathSciNet
go back to reference Truesdell, C. (1958). Geometric interpretation for the reciprocal deformation tensors. Quarterly of Applied Mathematics, 15, 434–435.MATHMathSciNet Truesdell, C. (1958). Geometric interpretation for the reciprocal deformation tensors. Quarterly of Applied Mathematics, 15, 434–435.MATHMathSciNet
go back to reference Truesdell, C. (1961). Stages in the development of the concept of stress. Problems of continuum mechanics (Muskhelisvili anniversary volume) (pp. 556–564). Philadelphia: Society of Industrial and Applied Mathematics. Truesdell, C. (1961). Stages in the development of the concept of stress. Problems of continuum mechanics (Muskhelisvili anniversary volume) (pp. 556–564). Philadelphia: Society of Industrial and Applied Mathematics.
go back to reference Truesdell, C. & Noll, W. (2004). The non-linear field theories of mechanics (3rd ed.). Berlin: Springer. Truesdell, C. & Noll, W. (2004). The non-linear field theories of mechanics (3rd ed.). Berlin: Springer.
go back to reference Truesdell, C. & Toupin, R. (1960). The classical field theories. In S. Flügge (Ed.), Encyclopedia of physics. Principles of classical mechanics and field theory (Vol. III/1, pp. 226–793). Berlin: Springer. Truesdell, C. & Toupin, R. (1960). The classical field theories. In S. Flügge (Ed.), Encyclopedia of physics. Principles of classical mechanics and field theory (Vol. III/1, pp. 226–793). Berlin: Springer.
go back to reference Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Berlin: Springer.MATH Tschoegl, N. W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduction. Berlin: Springer.MATH
go back to reference Veronda, D. R. & Westmann, R. A. (1970) Mechanical characterization of skin: Finite deformations. Journal of Biomechanics, 3, 111–124. Veronda, D. R. & Westmann, R. A. (1970) Mechanical characterization of skin: Finite deformations. Journal of Biomechanics, 3, 111–124.
go back to reference Viidik, A. (1973). Functional properties of collagenous tissues. International Review of Connective Tissue Research, 6, 127–215. Viidik, A. (1973). Functional properties of collagenous tissues. International Review of Connective Tissue Research, 6, 127–215.
go back to reference Vito, R. (1973). A note on arterial elasticity. Journal of Biomechanics, 6, 561–564. Vito, R. (1973). A note on arterial elasticity. Journal of Biomechanics, 6, 561–564.
go back to reference Volterra, V. (1930). Theory of functionals and of integral and integro-differential equations. Glasgow: Blackie and Son. Republished by Mineola, NY: Dover Publications. Volterra, V. (1930). Theory of functionals and of integral and integro-differential equations. Glasgow: Blackie and Son. Republished by Mineola, NY: Dover Publications.
go back to reference Wang, M. C. & Guth, E. (1952). Statistical theory of networks of non-Gaussian flexible chains. The Journal of Chemical Physics, 20, 1144–1157.MathSciNet Wang, M. C. & Guth, E. (1952). Statistical theory of networks of non-Gaussian flexible chains. The Journal of Chemical Physics, 20, 1144–1157.MathSciNet
go back to reference Wang, K., Hu, Y. & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484, 327–332. Wang, K., Hu, Y. & He, J. (2012). Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature, 484, 327–332.
go back to reference Wei, J. (1975). Least square fitting of an elephant. Chemtech, 5, 128–129. Wei, J. (1975). Least square fitting of an elephant. Chemtech, 5, 128–129.
go back to reference Weiss, J. A. & Gardiner, J. C. (2001). Computational modeling of ligament mechanics. Critical Reviews in Biomedical Engineering, 29, 303–371. Weiss, J. A. & Gardiner, J. C. (2001). Computational modeling of ligament mechanics. Critical Reviews in Biomedical Engineering, 29, 303–371.
go back to reference Williams, M. L. (1964). Structural analysis of viscoelastic materials. AIAA Journal, 2(5), 785–808.MATH Williams, M. L. (1964). Structural analysis of viscoelastic materials. AIAA Journal, 2(5), 785–808.MATH
go back to reference Williams, G. & Watts, D. C. (1970). Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 66, 80–85. Williams, G. & Watts, D. C. (1970). Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Transactions of the Faraday Society, 66, 80–85.
go back to reference Williams, M. L., Landel, R. F. & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3707. Williams, M. L., Landel, R. F. & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77, 3701–3707.
go back to reference Wineman, A. (2009). Nonlinear viscoelastic solids–a review. Mathematics and Mechanics of Solids, 14, 300–366.MATHMathSciNet Wineman, A. (2009). Nonlinear viscoelastic solids–a review. Mathematics and Mechanics of Solids, 14, 300–366.MATHMathSciNet
go back to reference Wineman, A. & Min, J. -H. (2003). Time dependent scission and cross-linking in an elastomeric cylinder undergoing circular shear and heat conduction. International Journal of Non-Linear Mechanics, 38, 969–983.MATH Wineman, A. & Min, J. -H. (2003). Time dependent scission and cross-linking in an elastomeric cylinder undergoing circular shear and heat conduction. International Journal of Non-Linear Mechanics, 38, 969–983.MATH
go back to reference Wineman, A. S. & Rajagopal, K. R. (2000). Mechanical response of polymers, an introduction. Cambridge: Cambridge University Press. Wineman, A. S. & Rajagopal, K. R. (2000). Mechanical response of polymers, an introduction. Cambridge: Cambridge University Press.
go back to reference Zaremba, S. (1903). Sur une forme perfectionnée de la théorie de la relaxation. Bulletin de l’Académie de Cracovie, 8, pp. 594–614. Zaremba, S. (1903). Sur une forme perfectionnée de la théorie de la relaxation. Bulletin de l’Académie de Cracovie, 8, pp. 594–614.
go back to reference Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press. Zener, C. (1948). Elasticity and anelasticity of metals. Chicago: University of Chicago Press.
go back to reference Zhu, W., Lai, W. M. & Mow, V. C. (1991). The density and strength of proteoglycan-proteoglycan interaction sites in concentrated solutions. Journal of Biomechanics, 24, 1007–1018. Zhu, W., Lai, W. M. & Mow, V. C. (1991). The density and strength of proteoglycan-proteoglycan interaction sites in concentrated solutions. Journal of Biomechanics, 24, 1007–1018.
go back to reference Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. Journal of Chemical Physics, 24, 269–278.MathSciNet Zimm, B. H. (1956). Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. Journal of Chemical Physics, 24, 269–278.MathSciNet
Metadata
Title
Stress
Author
Alan D. Freed
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-03551-2_4

Premium Partner