Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Strong convergence theorems for coordinatewise negatively associated random vectors in Hilbert space

Authors: Xiang Huang, Yongfeng Wu

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this work, some strong convergence theorems are established for weighted sums of coordinatewise negatively associated random vectors in Hilbert spaces. The results obtained in this paper improve and extend the corresponding ones of Huan et al. (Acta Math. Hung. 144(1):132–149, 2014) as well as correct and improve the corresponding one of Ko (J. Inequal. Appl. 2017:290, 2017).
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

The concept of the complete convergence was first introduced by Hsu and Robbins [3] to prove that the arithmetic mean of independent and identically distributed (i.i.d.) random variables converges completely to the expectation of the random variables. Later on, Baum and Katz [4] generalized and extended this fundamental theorem as follows.
Theorem A
Let α and r be real numbers such that \(r>1\), \(\alpha>1/2\) and \(\alpha r>1\) and let \(\{ X_{n},n\geq1\}\) be a sequence of i.i.d. random variables with zero mean. Then the following statements are equivalent:
(a)
\(\mathbb{E}|X_{1}|^{r}<\infty\);
 
(b)
\(\sum_{n=1}^{\infty}n^{\alpha r-2}\mathbb{P}( \vert \sum_{k=1}^{n}X_{k} \vert >\varepsilon n^{\alpha})<\infty\);
 
(c)
\(\sum_{n=1}^{\infty}n^{\alpha r-2}\mathbb{P}(\sup_{k\geq n}k^{-\alpha} \vert \sum_{i=1}^{k}X_{i} \vert >\varepsilon )<\infty\).
 
Since the independence assumption is not reasonable in the real practice of applications in many statistical problems. This result has been extended to many classes of dependent random variables. A classical extension of independence is negative association, which was introduced by Joag-Dev and Proschan [5] as follows.
Definition 1.1
A finite family of random variables \(\{X_{i},1\leq i\leq n\}\) is said to be negatively associated (NA) if for every pair of disjoint subsets A and B of \(\{1,2,\ldots,n\}\) and any real coordinatewise nondecreasing (or nonincreasing) functions \(f_{1}\) on \(\mathbb{R}^{A}\) and \(f_{2}\) on \(\mathbb{R}^{B}\),
$$\operatorname{Cov}\bigl(f_{1}(X_{i},i\in A),f_{2}(X_{j},j\in B)\bigr)\leq0, $$
whenever the covariance above exists. An infinite family of random variables is NA if every finite subfamily is NA.
There are many results based on NA random variables, we refer to Shao [6], Kuczmaszewska [7], Baek et al. [8], Kuczmaszewska and Lagodowski [9].
Let H be a real separable Hilbert space with the norm \(\|\cdot\|\) generated by an inner product \(\langle\cdot,\cdot\rangle\). Denote \(X^{(j)}=\langle X,e^{(j)}\rangle\), where \(\{e^{(j)},j\geq1\}\) is an orthonormal basis in H, and X is an H-valued random vector. Ko et al. [10] introduced the following concept of H-valued NA sequence.
Definition 1.2
A sequence \(\{X_{n},n\geq1\} \) of H-valued random vectors is said to be NA if there exists an orthonormal basis \(\{e^{(j)},j\geq 1\}\) in H such that, for any \(d\geq1\), the sequence \(\{ (X_{n}^{(1)},X_{n}^{(2)},\ldots,X_{n}^{(d)}),n\geq1\}\) of \(\mathbb {R}^{d}\)-valued random vectors is NA.
Ko et al. [10] and Thanh [11], respectively, obtained the almost sure convergence for NA random vectors in Hilbert space. Miao [12] established the Hajeck–Renyi inequality for H-valued NA random vectors.
Huan et al. [1] introduced the concept of coordinatewise negative association for random vectors in Hilbert space as follows, which is more general than that of Definition 1.2.
Definition 1.3
If for each \(j\geq1\), the sequence \(\{X_{n}^{(j)},n\geq1\}\) of random variables is NA, where \(X_{n}^{(j)}=\langle X_{n},e^{(j)}\rangle\), then the sequence \(\{X_{n},n\geq1\}\) of H-valued random vectors is said to be coordinatewise negatively associated (CNA).
Obviously, if a sequence of random vectors in Hilbert space is NA, it is CNA. However, generally speaking, the reverse is not true. One can see in Example 1.4 of Huan et al. [1].
Huan et al. [1] extended Theorem A from independence to the case of CNA random vectors in Hilbert space. Huan [13] extended this complete convergence result for H-valued CNA random vectors to the case of \(1< r<2\) and \(\alpha r=1\). However, the interesting case \(r=1\), \(\alpha r=1\) was not considered in these papers. Recently, Ko [2] extended the results of Huan et al. [1] from the complete convergence to the complete moment convergence as follows. For more details as regards the complete moment convergence, one can refer to Ko [2] and the references therein.
Theorem B
Let \(1\leq r<2\) and \(\alpha r>1\). Let \(\{X_{n},n\geq1\}\) be a sequence of zero mean H-valued CNA random vectors. If \(\{X_{n},n\geq1\}\) is coordinatewise weakly upper bounded by a random vector X satisfying \(\sum_{j=1}^{\infty}\mathbb {E}|X^{(j)}|^{r}<\infty\), then
$$ \sum_{n=1}^{\infty}n^{\alpha r-\alpha-2}\mathbb {E} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}X_{i} \Biggr\Vert -\varepsilon n^{\alpha} \Biggr)_{+}< \infty. $$
However, there are some mistakes in the proof of the result in the case \(r=1\). In specific, the formulas \(\int _{1}^{u}y^{r-2}\,dy\leq Cu^{r-1}\) of Eq. (2.7) and \(\sum_{n=1}^{m}n^{\alpha r-1-\alpha}\leq Cm^{\alpha r-\alpha}\) of Eq. (2.9) in Ko [2] are wrong when \(r=1\), the same problem also occurs in the proof of \(I_{222}\) (see the proof of Lemma 2.5 in Ko [2]). Moreover, the interesting case \(\alpha r=1\) was not considered in this paper.
In this paper, the results of the complete convergence and the complete moment convergence are established for CNA random vectors in Hilbert spaces. The results are focused on the weighted sums, which is more general than partial sums. The interesting case \(\alpha r=1\) is also considered in this article. Moreover, the results of the complete moment convergence are considered with the exponent \(0< q<2\) while in Theorem B only the case \(q=1\) was obtained.
Recall that if \(n^{-1}\sum_{i=1}^{n}\mathbb{P}(|X_{i}^{(j)}|>x)\leq C\mathbb{P}(|X^{(j)}|>x)\) for all \(j\geq1\), \(n\geq1\) and \(x\geq0\), then the sequence \(\{X_{n},n\geq1\}\) is said to be coordinatewise weakly upper bounded by X, where \(X_{n}^{(j)}=\langle X,e^{(j)}\rangle\) and \(X^{(j)}=\langle X,e^{(j)}\rangle\). Throughout the paper, let C be a positive constant whose value may vary in different places. Let \(\log{x}=\ln\max (x,e)\) and \(I(\cdot)\) be the indicator function.

2 Preliminaries

In this section, we state some lemmas which will be used in the proofs of our main results.
Lemma 2.1
(Huan et al. [1])
Let \(\{ X_{n},n\geq1\}\) be a sequence of H-valued CNA random vectors with zero means and \(\mathbb{E}\|X_{n}\|^{2}<\infty\) for all \(n\geq1\). Then
$$ \mathbb{E}\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}X_{i} \Biggr\Vert ^{2}\leq2\sum_{i=1}^{n}\mathbb{E} \|X_{i}\|^{2}. $$
Lemma 2.2
(Kuczmaszewska [7])
Let \(\{ Z_{n},n\geq1\}\) be a sequence of random variables weakly dominated by a random variable Z, that is, \(n^{-1}\sum_{i=1}^{n}\mathbb {P}(|Z_{i}|>x)\leq C\mathbb{P}(|Z|>x)\) for any \(x\geq0\). Then, for any \(a>0\) and \(b>0\), there exist some positive constants \(C_{1}\) and \(C_{2}\) such that
$$\begin{aligned}& n^{-1}\sum_{i=1}^{n}\mathbb {E} \vert Z_{i} \vert ^{a}I\bigl( \vert Z_{i} \vert >b\bigr)\leq C_{1}\mathbb{E} \vert Z \vert ^{a}I \bigl( \vert Z \vert >b\bigr); \\& n^{-1}\sum_{i=1}^{n}\mathbb{E} \vert X_{i} \vert ^{a}I\bigl( \vert Z_{i} \vert \leq b\bigr)\leq C_{2}\bigl[\mathbb{E} \vert Z \vert ^{a}I\bigl( \vert Z \vert \leq b\bigr)+b^{a}\mathbb{P} \bigl( \vert Z \vert >b\bigr)\bigr]. \end{aligned}$$
Lemma 2.3
Let \(1\leq r<2\) and \(\alpha r\geq 1\). Let \(\{a_{ni},1\leq i\leq n,n\geq1\}\) be an array of real numbers such that \(\sum_{i=1}^{n}a_{ni}^{2}=O(n)\). Let \(\{X_{n},n\geq1\}\) be a sequence of zero mean H-valued CNA random vectors. Suppose that \(\{ X_{n},n\geq1\}\) is coordinatewise weakly upper bounded by a random vector X. Assume that one of the following assumptions holds:
(i)
\(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{r}<\infty\) if \(0< q< r\);
 
(ii)
\(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{r}\log |X^{(j)}|<\infty\) if \(q=r\);
 
(iii)
\(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{q}<\infty\) if \(r< q<2\).
 
Then
$$ \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int _{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}X_{i} \Biggr\Vert >t^{1/q} \Biggr)\,dt< \infty. $$
Proof
Without loss of generality, we may assume that \(a_{ni}\geq0\) for each \(1\leq i\leq n\), \(n\geq 1\). For any \(t>0\) and each \(j\geq1\), denote
$$\begin{aligned}& Y_{i}^{(j)}=-t^{1/q}I\bigl(X_{i}^{(j)}< -t^{1/q} \bigr)+X_{i}^{(j)}I\bigl( \bigl\vert X_{i}^{(j)} \bigr\vert \leq t^{1/q}\bigr)+t^{1/q}I\bigl(X_{i}^{(j)}>t^{1/q} \bigr); \\& Z_{i}^{(j)}=X_{i}^{(j)}-Y_{i}^{(j)}= \bigl(X_{i}^{(j)}+t^{1/q}\bigr)I\bigl(X_{i}^{(j)}< -t^{1/q} \bigr)+\bigl(X_{i}^{(j)}-t^{1/q}\bigr)I \bigl(X_{i}^{(j)}>t^{1/q}\bigr); \\& Y_{i}=\sum_{j=1}^{\infty}Y_{i}^{(j)}e_{j} \quad \text{and}\quad Z_{i}=\sum_{j=1}^{\infty}Z_{i}^{(j)}e_{j}. \end{aligned}$$
It is easy to obtain
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int _{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}X_{i} \Biggr\Vert >t^{1/q} \Biggr)\,dt \\& \quad = \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq i\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni} \sum_{j=1}^{\infty}X_{i}^{(j)}e_{j} \Biggr\Vert >t^{1/q} \Biggr)\,dt \\& \quad \leq \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Bigl(\max _{1\leq k\leq n}\max_{j\geq 1}\bigl|X_{i}^{(j)}\bigr|>t^{1/q} \Bigr)\,dt \\& \qquad {} +\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni} \sum_{j=1}^{\infty}Y_{i}^{(j)}e_{j} \Biggr\Vert >t^{1/q} \Biggr)\,dt \\& \quad \leq \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\sum_{j=1}^{\infty} \sum_{i=1}^{n}\mathbb{P} \bigl( \bigl\vert X_{i}^{(j)} \bigr\vert >t^{1/q} \bigr)\,dt \\& \qquad {} +\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}Y_{i} \Biggr\Vert >t^{1/q} \Biggr)\,dt \\& \quad := J_{1}+J_{2}. \end{aligned}$$
By Lemma 2.2, we derive that
$$\begin{aligned} J_{1} \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty }n^{\alpha r-\alpha q-1} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \bigl( \bigl\vert X^{(j)} \bigr\vert >t^{1/q} \bigr)\,dt \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}I\bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ =&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}\mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{q}I\bigl(m^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha}\bigr)\sum_{n=1}^{m}n^{\alpha r-\alpha q-1}. \end{aligned}$$
Therefore, if \(q< r\),
$$ J_{1}\leq C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty }m^{\alpha r-\alpha q}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}I\bigl(m^{\alpha }< \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha}\bigr)\leq C\sum _{j=1}^{\infty}\mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{r}< \infty; $$
if \(q=r\),
$$ J_{1}\leq C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty }\log{m}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}I\bigl(m^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq (m+1)^{\alpha}\bigr)\leq C\sum _{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}\log \bigl\vert X^{(j)} \bigr\vert < \infty; $$
and if \(r< q<2\),
$$ J_{1}\leq C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty }\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}I\bigl(m^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha }\bigr)\leq C\sum _{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}< \infty. $$
To estimate \(J_{2}\), we first show that
$$ \sup_{t\geq n^{\alpha q}}t^{-1/q}\max_{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni} \mathbb{E}Y_{i} \Biggr\Vert \rightarrow 0\quad \text{as }n\rightarrow \infty. $$
Actually, noting by the Hölder inequality that \(\sum_{i=1}^{n}a_{ni}=O(n)\), we have by the zero mean assumption
$$\begin{aligned} \sup_{t\geq n^{\alpha q}}t^{-1/q}\max_{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni} \mathbb{E}Y_{i} \Biggr\Vert =&\sup_{t\geq n^{\alpha q}}t^{-1/q} \max_{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni} \mathbb{E}Z_{i} \Biggr\Vert \\ \leq&n^{-\alpha}\sup_{t\geq n^{\alpha q}}\sum _{j=1}^{\infty}\sum_{i=1}^{n}a_{ni} \mathbb{E} \bigl\vert X_{i}^{(j)} \bigr\vert I\bigl( \bigl\vert X_{i}^{(j)} \bigr\vert >t^{1/q}\bigr) \\ \leq&n^{-\alpha}\sum_{j=1}^{\infty}\sum _{i=1}^{n}a_{ni}\mathbb {E} \bigl\vert X_{i}^{(j)} \bigr\vert I\bigl( \bigl\vert X_{i}^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ \leq&Cn^{1-\alpha}\sum_{j=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert I\bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ \leq&Cn^{1-\alpha r}\sum_{j=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{r}I\bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr)\rightarrow0\quad \text{as }n\rightarrow\infty, \end{aligned}$$
provided that \(\alpha r>1\). If \(\alpha r=1\), the conclusion above remains true by the dominated convergence theorem. Therefore, when n is large enough, for any \(t\geq n^{\alpha q}\),
$$ \max_{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni} \mathbb{E}Y_{i} \Biggr\Vert \leq t^{1/q}/2. $$
(1)
Since \(\{a_{ni}Y_{i}^{(j)},1\leq i\leq n,n\geq1\}\) is NA for any \(j\geq1\), \(\{a_{ni}(Y_{i}-\mathbb{E}Y_{i}),1\leq i\leq n,n\geq1\}\) is CNA. Hence, by the Markov inequality, Lemmas 2.1 and 2.2, \(\sum_{i=1}^{n}a_{ni}^{2}=O(n)\) and (1),
$$\begin{aligned} J_{2} \leq&C\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}(Y_{i}- \mathbb{E}Y_{i}) \Biggr\Vert >t^{1/q}/2 \Biggr)\,dt \\ \leq&C\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}t^{-2/q}\mathbb{E} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}(Y_{i}- \mathbb{E}Y_{i}) \Biggr\Vert \Biggr)^{2}\,dt \\ \leq&C\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}t^{-2/q}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{E}\| Y_{i}-\mathbb{E}Y_{i}\|^{2}\,dt \\ \leq&C\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}t^{-2/q}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{E} \|Y_{i}\| ^{2}\,dt \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}t^{-2/q}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{E} \bigl\vert Y_{i}^{(j)} \bigr\vert ^{2}\,dt \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\sum_{i=1}^{n}a_{ni}^{2} \mathbb {P}\bigl( \bigl\vert X^{(j)} \bigr\vert >t^{1/q} \bigr)\,dt \\ &{}+C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}t^{-2/q}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq t^{1/q}\bigr)\,dt \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-1} \int_{n^{\alpha q}}^{\infty}\mathbb{P}\bigl( \bigl\vert X^{(j)} \bigr\vert >t^{1/q}\bigr)\,dt \\ &{}+C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-1} \int_{n^{\alpha q}}^{\infty}t^{-2/q}\mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq t^{1/q}\bigr)\,dt \\ =:&J_{21}+J_{22}. \end{aligned}$$
Similar to the proof of \(J_{1}<\infty\), we have \(J_{21}<\infty\). Finally, we will estimate \(J_{22}\). By some standard calculation, we have
$$\begin{aligned} J_{22} \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty }n^{\alpha r-\alpha q-1}\sum _{m=n}^{\infty} \int_{m^{\alpha q}}^{(m+1)^{\alpha q}}t^{-2/q}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq t^{1/q}\bigr)\,dt \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-\alpha q-1}\sum _{m=n}^{\infty}m^{\alpha q-2\alpha-1}\mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha}\bigr) \\ =&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha q-2\alpha -1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha}\bigr)\sum _{n=1}^{m}n^{\alpha r-\alpha q-1}. \end{aligned}$$
Since the upper bound of \(\sum_{n=1}^{m}n^{\alpha r-\alpha q-1}\) is different by choosing different values of q, we consider the following three cases. If \(q< r\), we have
$$\begin{aligned} J_{22} \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty }m^{\alpha r-2\alpha-1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq (m+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha r-2\alpha -1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq1\bigr) \\ &{}+C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha r-2\alpha -1}\sum _{l=1}^{m}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq (l+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}+C\sum _{j=1}^{\infty}\sum_{l=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I \bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr)\sum_{m=l}^{\infty}m^{\alpha r-2\alpha-1} \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}+C\sum _{j=1}^{\infty}\sum_{l=1}^{\infty}l^{\alpha r-2\alpha} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I \bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}< \infty; \end{aligned}$$
if \(q=r\), we have
$$\begin{aligned} J_{22} \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty }m^{\alpha r-2\alpha-1}\log m \mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq (m+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha r-2\alpha -1}\log m \mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq1\bigr) \\ &{}+C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha r-2\alpha -1}\log m \sum _{l=1}^{m}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl(l^{\alpha }< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}+C\sum _{j=1}^{\infty}\sum_{l=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I \bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr)\sum_{m=l}^{\infty}m^{\alpha r-2\alpha-1} \log m \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}+C\sum _{j=1}^{\infty}\sum_{l=1}^{\infty}l^{\alpha r-2\alpha} \log l \mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I \bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}+C\sum _{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}\log \bigl\vert X^{(j)} \bigr\vert < \infty; \end{aligned}$$
and if \(r< q<2\), we have
$$\begin{aligned} J_{22} \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty }m^{\alpha q-2\alpha-1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq (m+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha q-2\alpha -1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq1\bigr) \\ &{}+C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha q-2\alpha -1}\sum _{l=1}^{m}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq (l+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}+C\sum _{j=1}^{\infty}\sum_{l=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I \bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr)\sum_{m=l}^{\infty}m^{\alpha q-2\alpha-1} \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}+C\sum _{j=1}^{\infty}\sum_{l=1}^{\infty}l^{\alpha q-2\alpha} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I \bigl(l^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(l+1)^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{q}< \infty. \end{aligned}$$
Consequently, the proof of the lemma is completed. □

3 Main results and discussion

In this section, we will present the main results and their proofs as follows.
Theorem 3.1
Let \(1\leq r<2\) and \(\alpha r\geq 1\). Let \(\{a_{ni},1\leq i\leq n,n\geq1\}\) be an array of real numbers such that \(\sum_{i=1}^{n}a_{ni}^{2}=O(n)\). Let \(\{X_{n},n\geq1\}\) be sequence of zero mean H-valued CNA random vectors. If \(\{X_{n},n\geq 1\}\) is coordinatewise weakly upper bounded by a random vector X, then \(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{r}<\infty\) implies for any \(\varepsilon>0\) that
$$ \sum_{n=1}^{\infty}n^{\alpha r-2}\mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert >\varepsilon n^{\alpha} \Biggr)< \infty. $$
Proof
Without loss of generality, we may assume that \(a_{ni}\geq0\) for each \(1\leq i\leq n\), \(n\geq1\). For each \(n\geq 1\) and each \(j\geq1\), denote
$$\begin{aligned}& U_{i}^{(j)}=-n^{\alpha}I\bigl(X_{i}^{(j)}< -n^{\alpha } \bigr)+X_{i}^{(j)}I\bigl( \bigl\vert X_{i}^{(j)} \bigr\vert \leq n^{\alpha}\bigr)+n^{\alpha }I\bigl(X_{i}^{(j)}>n^{\alpha} \bigr); \\& V_{i}^{(j)}=X_{i}^{(j)}-V_{i}^{(j)}= \bigl(X_{i}^{(j)}+n^{\alpha }\bigr)I\bigl(X_{i}^{(j)}< -n^{\alpha} \bigr)+\bigl(X_{i}^{(j)}-n^{\alpha }\bigr)I \bigl(X_{i}^{(j)}>n^{\alpha}\bigr); \\& U_{i}=\sum_{j=1}^{\infty}U_{i}^{(j)}e_{j} \quad \text{and}\quad V_{i}=\sum_{j=1}^{\infty}V_{i}^{(j)}e_{j}. \end{aligned}$$
It is easy to obtain
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{\alpha r-2}\mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert >\varepsilon n^{\alpha} \Biggr) \\& \quad = \sum_{n=1}^{\infty}n^{\alpha r-2} \mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}\sum _{j=1}^{\infty }X_{i}^{(j)}e_{j} \Biggr\Vert >\varepsilon n^{\alpha} \Biggr) \\& \quad \leq \sum_{n=1}^{\infty}n^{\alpha r-2} \mathbb{P} \Bigl(\max_{1\leq i\leq n}\max_{j\geq1}\bigl|X_{i}^{(j)}\bigr|> n^{\alpha} \Bigr) \\& \qquad {} +\sum_{n=1}^{\infty}n^{\alpha r-2} \mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}\sum _{j=1}^{\infty }U_{i}^{(j)}e_{j} \Biggr\Vert >\varepsilon n^{\alpha} \Biggr) \\& \quad \leq \sum_{n=1}^{\infty}n^{\alpha r-2} \sum_{j=1}^{\infty}\sum _{i=1}^{n}\mathbb{P} \bigl( \bigl\vert X_{i}^{(j)} \bigr\vert > n^{\alpha} \bigr) \\& \qquad {} +\sum_{n=1}^{\infty}n^{\alpha r-2} \mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}U_{i} \Biggr\Vert >\varepsilon n^{\alpha} \Biggr) \\& \quad := I_{1}+I_{2}. \end{aligned}$$
By weakly upper bounded assumption and Lemma 2.2, we have
$$\begin{aligned} I_{1} \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty }n^{\alpha r-1}\mathbb{P} \bigl( \bigl\vert X^{(j)} \bigr\vert > n^{\alpha} \bigr) \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-1}\sum _{m=n}^{\infty}\mathbb{P} \bigl(m^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq (m+1)^{\alpha} \bigr) \\ =&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}\mathbb{P} \bigl(m^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha} \bigr)\sum _{n=1}^{m}n^{\alpha r-1} \\ \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha r}\mathbb {P} \bigl(m^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq(m+1)^{\alpha} \bigr) \\ \leq& C\sum_{j=1}^{\infty} \mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}< \infty. \end{aligned}$$
To estimate \(I_{2}\), we first show that
$$ n^{-\alpha}\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}\mathbb{E}U_{i} \Biggr\Vert \rightarrow0\quad \text{as }n\rightarrow\infty. $$
Note by the Hölder inequality that \(\sum_{i=1}^{n}a_{ni}=O(n)\). So we have by the zero mean assumption, if \(\alpha r>1\),
$$\begin{aligned} n^{-\alpha}\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}\mathbb{E}U_{i} \Biggr\Vert =&n^{-\alpha}\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni} \mathbb{E}V_{i} \Biggr\Vert \\ \leq&n^{-\alpha}\sum_{j=1}^{\infty}\sum _{i=1}^{n}a_{ni}\mathbb {E} \bigl\vert X_{i}^{(j)} \bigr\vert I\bigl( \bigl\vert X_{i}^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ \leq&Cn^{1-\alpha}\sum_{j=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert I\bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ \leq&Cn^{1-\alpha r}\sum_{j=1}^{\infty} \mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{r}I\bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr)\rightarrow0\quad \text{as }n\rightarrow\infty; \end{aligned}$$
and, if \(\alpha r=1\), the conclusion above also remains true by the dominated convergence theorem. Therefore, when n is large enough,
$$ \max_{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}EU_{i} \Biggr\Vert \leq n^{-\alpha}/2. $$
(2)
Noting that \(\{a_{ni}U_{i}^{(j)},1\leq i\leq n,n\geq1\}\) is NA for any \(j\geq1\), one can see that \(\{a_{ni}(U_{i}-\mathbb{E}U_{i}),1\leq i\leq n,n\geq1\}\) is CNA. Hence, we have by the Markov inequality, Lemmas 2.1 and 2.2, \(\sum_{i=1}^{n}a_{ni}^{2}=O(n)\) and (2)
$$\begin{aligned} I_{2} \leq&C\sum_{n=1}^{\infty}n^{\alpha r-2} \mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}(U_{i}- \mathbb{E}U_{i}) \Biggr\Vert >\varepsilon n^{\alpha }/2 \Biggr) \\ \leq&C\sum_{n=1}^{\infty}n^{\alpha r-2\alpha-2} \mathbb{E} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}(U_{i}-\mathbb {E}U_{i}) \Biggr\Vert \Biggr)^{2} \\ \leq&C\sum_{n=1}^{\infty}n^{\alpha r-2\alpha-2}\sum _{i=1}^{n}a_{ni}^{2} \mathbb{E}\|U_{i}-\mathbb{E}U_{i}\|^{2} \\ \leq&C\sum_{n=1}^{\infty}n^{\alpha r-2\alpha-2}\sum _{i=1}^{n}a_{ni}^{2} \mathbb{E}\|U_{i}\|^{2} \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-2\alpha -2}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{E} \bigl\vert U_{i}^{(j)} \bigr\vert ^{2} \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-2}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{P} \bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ &{}+C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-2\alpha -2}\sum _{i=1}^{n}a_{ni}^{2}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq n^{\alpha}\bigr) \\ \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-1}\mathbb {P}\bigl( \bigl\vert X^{(j)} \bigr\vert >n^{\alpha}\bigr) \\ &{}+C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-2\alpha -1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq n^{\alpha}\bigr) \\ =:&I_{21}+I_{22}. \end{aligned}$$
Similar to the proof of \(I_{1}<\infty\), we have \(I_{21}<\infty\). Finally, we will estimate \(I_{22}\). It is easy to see that
$$\begin{aligned} I_{22} \leq&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty }n^{\alpha r-2\alpha-1}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl( \bigl\vert X^{(j)} \bigr\vert \leq n^{\alpha}\bigr) \\ =&C\sum_{j=1}^{\infty}\sum _{n=1}^{\infty}n^{\alpha r-2\alpha -1}\sum _{m=1}^{n}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl((m-1)^{\alpha }< \bigl\vert X^{(j)} \bigr\vert \leq m^{\alpha}\bigr) \\ =&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}\mathbb {E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl((m-1)^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq m^{\alpha}\bigr)\sum _{n=m}^{\infty}n^{\alpha r-2\alpha-1} \\ \leq&C\sum_{j=1}^{\infty}\sum _{m=1}^{\infty}m^{\alpha r-2\alpha }\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{2}I\bigl((m-1)^{\alpha}< \bigl\vert X^{(j)} \bigr\vert \leq m^{\alpha }\bigr) \\ \leq& C\sum _{j=1}^{\infty}\mathbb{E} \bigl\vert X^{(j)} \bigr\vert ^{r}< \infty. \end{aligned}$$
The proof is completed. □
Remark 3.1
Theorem 3.1 concerns the weighted sums of random vectors in Hilbert space. If we take \(a_{ni}=1\) for any \(1\leq i\leq n\), \(n\geq1\), the result is still stronger than the corresponding one of Huan et al. [1] since the case \(\alpha r=1\) was not considered in Huan et al. [1]; Huan [13] considered the case \(\alpha r=1\) for the partial sums of random vectors in Hilbert space, but \(1< r<2\) was assumed in that paper. Therefore, Theorem 3.1 improves the corresponding results of Huan et al. [1] and Huan [13], respectively.
Theorem 3.2
Let \(1\leq r<2\). Let \(\{ a_{n},n\geq1\}\) be a sequence of real numbers such that \(\sum_{i=1}^{n}a_{i}^{2}=O(n)\) and let \(\{X_{n},n\geq1\}\) be a sequence of zero mean H-valued CNA random vectors. If \(\{X_{n},n\geq1\}\) is coordinatewise weakly upper bounded by a random vector X, then \(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{r}<\infty\) implies that
$$ \frac{1}{n^{1/r}} \Biggl\Vert \sum_{i=1}^{n}a_{i}X_{i} \Biggr\Vert \rightarrow0\quad \textit{a.s.} $$
Proof
Applying Theorem 3.1 with \(a_{ni}=a_{i}\), for each \(1\leq i\leq n\), \(n\geq1\) and \(\alpha=1/r\), we have, for any \(\varepsilon>0\),
$$\begin{aligned} \infty >&\sum_{n=1}^{\infty}n^{-1} \mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{i}X_{i} \Biggr\Vert >\varepsilon n^{1/r} \Biggr) \\ =&\sum_{m=0}^{\infty}\sum _{n=2^{m}}^{2^{m+1}-1}n^{-1}\mathbb {P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{i}X_{i} \Biggr\Vert >\varepsilon n^{1/r} \Biggr) \\ \geq&\frac{1}{2}\sum_{m=0}^{\infty} \mathbb{P} \Biggl(\max_{1\leq k\leq2^{m}} \Biggl\Vert \sum _{i=1}^{k}a_{i}X_{i} \Biggr\Vert >\varepsilon \bigl(2^{m+1}\bigr)^{1/r} \Biggr), \end{aligned}$$
which together with the Borel–Cantelli lemma shows that, as \(m\rightarrow\infty\),
$$ \frac{1}{(2^{m})^{1/r}}\max_{1\leq k\leq 2^{m+1}} \Biggl\Vert \sum _{i=1}^{k}a_{i}X_{i} \Biggr\Vert \rightarrow0\quad \mbox{a.s.} $$
Noting that, for any fixed n, there exists a positive integer m such that \(2^{m}\leq n<2^{m+1}\), we have
$$ \frac{1}{n^{1/r}} \Biggl\Vert \sum_{i=1}^{n}a_{i}X_{i} \Biggr\Vert \leq\frac{1}{(2^{m})^{1/r}}\max_{1\leq k\leq2^{m+1}} \Biggl\Vert \sum_{i=1}^{k}a_{i}X_{i} \Biggr\Vert \rightarrow0\quad \mbox{a.s.} $$
The proof is completed. □
Theorem 3.3
Let \(1\leq r<2\) and \(\alpha r\geq 1\). Let \(\{a_{ni},1\leq i\leq n,n\geq1\}\) be an array of real numbers such that \(\sum_{i=1}^{n}a_{ni}^{2}=O(n)\). Let \(\{X_{n},n\geq1\}\) be a sequence of zero mean H-valued CNA random vectors. Suppose that \(\{ X_{n},n\geq1\}\) is coordinatewise weakly upper bounded by a random vector X. Assume that one of the following assumptions holds:
(i)
\(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{r}<\infty\) if \(0< q< r\);
 
(ii)
\(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{r}\log |X^{(j)}|<\infty\) if \(q=r\);
 
(iii)
\(\sum_{j=1}^{\infty}\mathbb{E}|X^{(j)}|^{q}<\infty\) if \(r< q<2\).
 
Then
$$ \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2}\mathbb {E} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon n^{\alpha} \Biggr)_{+}^{q}< \infty. $$
Proof
From Theorem 3.1 and Lemma 2.3 we can see that
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2}\mathbb {E} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon n^{\alpha} \Biggr)_{+}^{q} \\& \quad = \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{0}^{\infty }\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon n^{\alpha}>t^{1/q} \Biggr)\,dt \\& \quad = \sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{0}^{n^{\alpha q}}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon n^{\alpha}>t^{1/q} \Biggr)\,dt \\& \qquad {} +\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon n^{\alpha}>t^{1/q} \Biggr)\,dt \\& \quad \leq \sum_{n=1}^{\infty}n^{\alpha r-2} \mathbb{P} \Biggl(\max_{1\leq k\leq n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert >\varepsilon n^{\alpha} \Biggr) \\& \qquad {} +\sum_{n=1}^{\infty}n^{\alpha r-\alpha q-2} \int_{n^{\alpha q}}^{\infty}\mathbb{P} \Biggl(\max _{1\leq k\leq n} \Biggl\Vert \sum_{i=1}^{k}a_{ni}X_{i} \Biggr\Vert >t^{1/q} \Biggr)\,dt \\& \quad < \infty. \end{aligned}$$
The proof is completed. □
Remark 3.2
As stated in Sect. 1, the corresponding result in Ko [2] is wrongly established when \(r=1\). If we take \(a_{ni}=1\) for any \(1\leq i\leq n\), \(n\geq1\), \(q=1\), Theorem 3.3 is equivalent to the corresponding one of Ko [2] when \(1< r<2\), \(\alpha r>1\). The interesting case \(\alpha r=1\), which was not considered in Ko [2], is also considered here. Consequently, Theorem 3.3 generalizes and improves the corresponding result of Ko [2].
Theorem 3.4
Suppose that the conditions of Theorem 3.3 hold with \(\alpha r>1\), we have
$$ \sum_{n=1}^{\infty}n^{\alpha r-2}\mathbb{E} \Biggl(\sup_{k\geq n}k^{-\alpha} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon \Biggr)_{+}^{q}< \infty. $$
Proof
By standard calculation, we obtain from Theorem 3.3
$$\begin{aligned}& \sum_{n=1}^{\infty}n^{\alpha r-2}\mathbb{E} \Biggl(\sup_{k\geq n}k^{-\alpha} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon \Biggr)_{+}^{q} \\& \quad = \sum_{m=1}^{\infty}\sum _{n=2^{m-1}}^{2^{m}-1}n^{\alpha r-2}\mathbb{E} \Biggl(\sup _{k\geq n}k^{-\alpha} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon \Biggr)_{+}^{q} \\& \quad \leq C\sum_{m=1}^{\infty}2^{m(\alpha r-1)} \mathbb{E} \Biggl(\sup_{k\geq2^{m-1}}k^{-\alpha} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon \Biggr)_{+}^{q} \\& \quad \leq C\sum_{l=1}^{\infty}\mathbb{E} \Biggl(\max_{2^{l-1}\leq k< 2^{l}}k^{-\alpha} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon \Biggr)_{+}^{q}\sum _{m=1}^{l}2^{m(\alpha r-1)} \\& \quad \leq C\sum_{l=1}^{\infty}2^{l(\alpha r-1)} \mathbb{E} \Biggl(\max_{2^{l-1}\leq k< 2^{l}}2^{-\alpha(l-1)} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon \Biggr)_{+}^{q} \\& \quad \leq C\sum_{l=1}^{\infty}2^{l(\alpha r-\alpha q-1)} \mathbb{E} \Biggl(\max_{1\leq k< 2^{l}} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon2^{\alpha(l-1)} \Biggr)_{+}^{q} \\& \quad \leq C\sum_{l=1}^{\infty}n^{\alpha r-\alpha q-2} \mathbb{E} \Biggl(\max_{1\leq k< n} \Biggl\Vert \sum _{i=1}^{k}a_{ni}X_{i} \Biggr\Vert -\varepsilon2^{-\alpha}n^{\alpha} \Biggr)_{+}^{q}< \infty. \end{aligned}$$
The proof is completed. □

4 Conclusions

In this paper, we investigate the complete convergence and the complete moment convergence for sequences of coordinatewise negatively associated random vectors in Hilbert spaces. The obtained results in this paper improve and extend the corresponding theorems of Huan et al. [1] as well as correct and improve the corresponding one of Ko [2].

Acknowledgements

The research of X. Huang is partially supported by the scientific research project of Anhui University of Chinese Medicine (20129n011) and the teaching and research project of Anhui University of Chinese Medicine (2016xjjy009). The research of Y. Wu is partially supported by the Natural Science Foundation of Anhui Province (1708085MA04), the Key Program in the Young Talent Support Plan in Universities of Anhui Province (gxyqZD2016316) and Chuzhou University scientific research fund (2017qd17).

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Huan, N.V., Quang, N.V., Thuan, N.T.: Baum–Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces. Acta Math. Hung. 144(1), 132–149 (2014) MathSciNetCrossRefMATH Huan, N.V., Quang, N.V., Thuan, N.T.: Baum–Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces. Acta Math. Hung. 144(1), 132–149 (2014) MathSciNetCrossRefMATH
6.
go back to reference Shao, Q.M.: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13, 343–356 (2000) MathSciNetCrossRefMATH Shao, Q.M.: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theor. Probab. 13, 343–356 (2000) MathSciNetCrossRefMATH
7.
go back to reference Kuczmaszewska, A.: On complete convergence in Marcinkiewicz–Zygmund type SLLN for negatively associated random variables. Acta Math. Hung. 128, 116–130 (2010) MathSciNetCrossRefMATH Kuczmaszewska, A.: On complete convergence in Marcinkiewicz–Zygmund type SLLN for negatively associated random variables. Acta Math. Hung. 128, 116–130 (2010) MathSciNetCrossRefMATH
8.
go back to reference Baek, J.I., Choi, I.B., Niu, S.L.: On the complete convergence of weighted sums for arrays of negatively associated variables. J. Korean Stat. Soc. 37, 73–80 (2008) MathSciNetCrossRefMATH Baek, J.I., Choi, I.B., Niu, S.L.: On the complete convergence of weighted sums for arrays of negatively associated variables. J. Korean Stat. Soc. 37, 73–80 (2008) MathSciNetCrossRefMATH
9.
go back to reference Kuczmaszewska, A., Lagodowski, Z.A.: Convergence rates in the SLLN for some classes of dependent random fields. J. Math. Anal. Appl. 380, 571–584 (2011) MathSciNetCrossRefMATH Kuczmaszewska, A., Lagodowski, Z.A.: Convergence rates in the SLLN for some classes of dependent random fields. J. Math. Anal. Appl. 380, 571–584 (2011) MathSciNetCrossRefMATH
10.
go back to reference Ko, M.H., Kim, T.S., Han, K.H.: A note on the almost sure convergence for dependent random variables in a Hilbert space. J. Theor. Probab. 22, 506–513 (2009) MathSciNetCrossRefMATH Ko, M.H., Kim, T.S., Han, K.H.: A note on the almost sure convergence for dependent random variables in a Hilbert space. J. Theor. Probab. 22, 506–513 (2009) MathSciNetCrossRefMATH
11.
go back to reference Thanh, L.V.: On the almost sure convergence for dependent random vectors in Hilbert spaces. Acta Math. Hung. 139(3), 276–285 (2013) MathSciNetCrossRefMATH Thanh, L.V.: On the almost sure convergence for dependent random vectors in Hilbert spaces. Acta Math. Hung. 139(3), 276–285 (2013) MathSciNetCrossRefMATH
12.
go back to reference Miao, Y.: Hajeck–Renyi inequality for dependent random variables in Hilbert space and applications. Rev. Unión Mat. Argent. 53(1), 101–112 (2012) MATH Miao, Y.: Hajeck–Renyi inequality for dependent random variables in Hilbert space and applications. Rev. Unión Mat. Argent. 53(1), 101–112 (2012) MATH
13.
Metadata
Title
Strong convergence theorems for coordinatewise negatively associated random vectors in Hilbert space
Authors
Xiang Huang
Yongfeng Wu
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1678-y

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner