Skip to main content
Top

2016 | OriginalPaper | Chapter

Strong Hardness of Privacy from Weak Traitor Tracing

Authors : Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, Mark Zhandry

Published in: Theory of Cryptography

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A central problem in differential privacy is to accurately answer a large family Q of statistical queries over a data universe X. A statistical query on a dataset \(D \in X^n\) asks “what fraction of the elements of D satisfy a given predicate p on X?” Ignoring computational constraints, it is possible to accurately answer exponentially many queries on an exponential size universe while satisfying differential privacy (Blum et al., STOC’08). Dwork et al. (STOC’09) and Boneh and Zhandry (CRYPTO’14) showed that if both Q and X are of polynomial size, then there is an efficient differentially private algorithm that accurately answers all the queries. They also proved that if Q and X are both exponentially large, then under a plausible assumption, no efficient algorithm exists.
We show that, under the same assumption, if either the number of queries or the data universe is of exponential size, then there is no differentially private algorithm that answers all the queries. Specifically, we prove that if one-way functions and indistinguishability obfuscation exist, then:
1.
For every n, there is a family Q of \({\tilde{O}}(n^7)\) queries on a data universe X of size \(2^d\) such that no \(\mathrm {poly}(n,d)\) time differentially private algorithm takes a dataset \(D \in X^n\) and outputs accurate answers to every query in Q.
 
2.
For every n, there is a family Q of \(2^d\) queries on a data universe X of size \({\tilde{O}}(n^7)\) such that no \(\mathrm {poly}(n,d)\) time differentially private algorithm takes a dataset \(D \in X^n\) and outputs accurate answers to every query in Q.
 
In both cases, the result is nearly quantitatively tight, since there is an efficient differentially private algorithm that answers \({\tilde{{\varOmega }}}(n^2)\) queries on an exponential size data universe, and one that answers exponentially many queries on a data universe of size \({\tilde{{\varOmega }}}(n^2)\).
Our proofs build on the connection between hardness of differential privacy and traitor-tracing schemes (Dwork et al., STOC’09; Ullman, STOC’13). We prove our hardness result for a polynomial size query set (resp., data universe) by showing that they follow from the existence of a special type of traitor-tracing scheme with very short ciphertexts (resp., secret keys), but very weak security guarantees, and then constructing such a scheme.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
It may require exponential time just to describe and evaluate an arbitrary counting query, which would rule out efficiency for reasons that have nothing to do with privacy. In this work, we restrict attention to queries that are efficiently computable in time \(\mathrm {poly}(n,\log |X|)\), so they are not the bottleneck in the computation.
 
2
We use [1, i] to denote the discrete interval \(\left\{ 1,2,\dots ,i\right\} \), with the convention that \([1,0] = \emptyset \).
 
3
If we do not restrict the running time of the algorithm, then it is without loss of generality for the algorithm to simply output a list of real-valued answers to each queries by computing \( Eval (S,q)\) for every \(q \in Q\). However, this transformation makes the running time of the algorithm at least |Q|. The additional generality of this framework allows the algorithm to run in time sublinear in |Q|. Using this framework is crucial, since some of our results concern settings where the number of queries is exponential in the size of the dataset.
 
Literature
1.
go back to reference Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_27 CrossRef Badrinarayanan, S., Miles, E., Sahai, A., Zhandry, M.: Post-zeroizing obfuscation: new mathematical tools, and the case of evasive circuits. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 764–791. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49896-5_​27 CrossRef
2.
go back to reference Beimel, A., Nissim, K., Stemmer, U.: Private learning and sanitization: pure vs. approximate differential privacy. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 363–378. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40328-6_26 CrossRef Beimel, A., Nissim, K., Stemmer, U.: Private learning and sanitization: pure vs. approximate differential privacy. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM -2013. LNCS, vol. 8096, pp. 363–378. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40328-6_​26 CrossRef
3.
go back to reference Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leakage and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 542–564. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0_20 CrossRef Bellare, M., Stepanovs, I., Tessaro, S.: Contention in cryptoland: obfuscation, leakage and UCE. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 542–564. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49099-0_​20 CrossRef
5.
go back to reference Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: PODS (2005) Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: PODS (2005)
7.
go back to reference Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). doi:10.1007/11761679_34 CrossRef Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). doi:10.​1007/​11761679_​34 CrossRef
8.
go back to reference Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_27 CrossRef Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014). doi:10.​1007/​978-3-662-44371-2_​27 CrossRef
9.
go back to reference Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2_11 CrossRef Brzuska, C., Farshim, P., Mittelbach, A.: Indistinguishability obfuscation and UCEs: the case of computationally unpredictable sources. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 188–205. Springer, Heidelberg (2014). doi:10.​1007/​978-3-662-44371-2_​11 CrossRef
10.
go back to reference Bun, M., Ullman, J., Vadhan, S.P.: Fingerprinting codes and the price of approximate differential privacy. In: STOC (2014) Bun, M., Ullman, J., Vadhan, S.P.: Fingerprinting codes and the price of approximate differential privacy. In: STOC (2014)
11.
12.
go back to reference Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_12 CrossRef Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-47989-6_​12 CrossRef
13.
go back to reference Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS (2003) Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS (2003)
14.
go back to reference Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). doi:10.1007/11681878_14 CrossRef Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). doi:10.​1007/​11681878_​14 CrossRef
15.
go back to reference Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC (2009) Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: STOC (2009)
17.
go back to reference Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In: FOCS. IEEE (2010) Dwork, C., Rothblum, G.N., Vadhan, S.P.: Boosting and differential privacy. In: FOCS. IEEE (2010)
18.
go back to reference Dwork, C., Smith, A.D., Steinke, T., Ullman, J., Vadhan, S.P.: Robust traceability from trace amounts. In: FOCS (2015) Dwork, C., Smith, A.D., Steinke, T., Ullman, J., Vadhan, S.P.: Robust traceability from trace amounts. In: FOCS (2015)
19.
go back to reference Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013) Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)
20.
21.
go back to reference Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: FOCS (2015) Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: FOCS (2015)
23.
go back to reference Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS (2010) Hardt, M., Rothblum, G.N.: A multiplicative weights mechanism for privacy-preserving data analysis. In: FOCS (2010)
24.
go back to reference Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_12 CrossRef Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​12 CrossRef
26.
go back to reference Kowalczyk, L., Malkin, T., Ullman, J., Zhandry, M.: Strong hardness of privacy from weak traitor tracing. IACR Cryptology ePrint Archive 2016/721 (2016) Kowalczyk, L., Malkin, T., Ullman, J., Zhandry, M.: Strong hardness of privacy from weak traitor tracing. IACR Cryptology ePrint Archive 2016/721 (2016)
27.
go back to reference Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_22 CrossRef Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53008-5_​22 CrossRef
28.
29.
go back to reference Nikolov, A., Talwar, K., Zhang, L.: The geometry of differential privacy: the sparse and approximate cases. In: STOC (2013) Nikolov, A., Talwar, K., Zhang, L.: The geometry of differential privacy: the sparse and approximate cases. In: STOC (2013)
30.
go back to reference Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC, pp. 765–774. ACM, 5–8 June 2010 Roth, A., Roughgarden, T.: Interactive privacy via the median mechanism. In: STOC, pp. 765–774. ACM, 5–8 June 2010
31.
go back to reference Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014) Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: STOC (2014)
33.
go back to reference Thaler, J., Ullman, J., Vadhan, S.: Faster algorithms for privately releasing marginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 810–821. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31594-7_68 CrossRef Thaler, J., Ullman, J., Vadhan, S.: Faster algorithms for privately releasing marginals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 810–821. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-31594-7_​68 CrossRef
34.
go back to reference Ullman, J.: Answering \(n^{2+o(1)}\) counting queries with differential privacy is hard. In: STOC (2013) Ullman, J.: Answering \(n^{2+o(1)}\) counting queries with differential privacy is hard. In: STOC (2013)
35.
go back to reference Ullman, J.: Private multiplicative weights beyond linear queries. In: PODS (2015) Ullman, J.: Private multiplicative weights beyond linear queries. In: PODS (2015)
Metadata
Title
Strong Hardness of Privacy from Weak Traitor Tracing
Authors
Lucas Kowalczyk
Tal Malkin
Jonathan Ullman
Mark Zhandry
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-53641-4_25

Premium Partner