Skip to main content
Top

2014 | OriginalPaper | Chapter

Strongly Semantic Information as Information About the Truth

Author : Gustavo Cevolani

Published in: Recent Trends in Philosophical Logic

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Some authors, most notably Luciano Floridi, have recently argued for a notion of “strongly” semantic information, according to which information “encapsulates” truth (the so-called “veridicality thesis”). We propose a simple framework to compare different formal explications of this concept and assess their relative merits. It turns out that the most adequate proposal is that based on the notion of “partial truth”, which measures the amount of “information about the truth” conveyed by a given statement. We conclude with some critical remarks concerning the veridicality thesis in connection with the role played by truth and information as relevant cognitive goals of inquiry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
As a terminological remark, note that while “misinformation” simply denotes false or incorrect information, “disinformation” is false information deliberately intended to deceive or mislead.
 
2
This idea can be traced back at least to Karl Popper [27, in particular Sects. 34 and 35, and Appendix IX, p. 411, footnote 8]; cf. also [3, p. 406].
 
3
Nothing substantial, in what follows, depends on such assumption.
 
4
In the literature, it is usual to say that Eqs. (1) and (2) define the (amount of) “substantive information” or “information content” of \(A\), as opposed to the “unexpectedness” or “surprise value” of \(A\), which is defined as https://static-content.springer.com/image/chp%3A10.1007%2F978-3-319-06080-4_5/323277_1_En_5_IEq35_HTML.gif [4, p. 20]. On this distinction, see for instance Hintikka [18, p. 313] and Kuipers [22, p. 865].
 
5
To hush up this “scandal”, Hintikka [19] developed a distinction (for polyadic first-order languages) between “depth” and “surface” information, according to which logical truths may contain a positive amount of (surface) information (cf. also [31]).
 
6
This does not mean that this assumption is the only culprit. As noted during discussion at the Trends in Logic XI conference, a way of avoiding BCP would be to adopt a non-classical logic according to which contradictions do not entail everything and hence are not maximally informative. Systems of this kind are provided by those “connexive logics” that reject the classical principle ex contradictione quodlibet (for all \(A\), \(\bot \) entails \(A\)) in favor of the (Aristotelian) intuition that ex contradictione nihil sequitur (cf. [33, Sect. 1.3]).
 
7
In the following, we replace, without any significant loss of generality, Floridi’s talk of “infons”—“discrete items of factual information qualifiable in principle as either true or false, irrespective of their semiotic code and physical implementation” [10, p. 199]—by talk of sentences or statements in the given language \(\fancyscript{L}_{n}\).
 
8
In logical parlance, a c-statement is a statement in conjunctive normal form such that each of its clauses is a single literal. Following Oddie [26, p. 86], a c-statement may be also called a “quasi-constituent”, since it can be conceived as a “fragment” of a constituent.
 
9
For different accounts of verisimilitude, see [21, 24, 26, 29].
 
10
One may note that measure \( vs _{\phi }\) is not normalized, and varies between \(-\phi \) and \(1\). A normalized measure of the verisimilitude of \(A\) is \(( vs _{\phi }(A)+\phi )/(1+\phi )\), which varies between 0 and 1.
 
11
Proof note that, among c-statements, \(A\) entails \(B\) iff \( b (A)\supseteq b (B)\). If both are true, this implies \( t (A,C_{\star })\supseteq t (B,C_{\star })\) and hence \( vs _{\phi }(A)= cont _{t}(A,C_{\star })\ge cont _{t}(B,C_{\star })= vs _{\phi }(B)\). For discussion of this Popperian requirement, see [24, pp. 186–187, 233, 235–236]. Note also that \( vs _{\phi }\) satisfies the stronger requirement that among true theories, the one with the greater degree of (true) basic content is more verisimilar than the other; i.e., if \(A\) and \(B\) are true and \( cont _{t}(A,C)> cont _{t}(B,C)\) then \( vs _{\phi }(A)> vs _{\phi }(B)\). \(\square \)
 
12
Proof if \(A\) entails \(B\) and both are completely false, then \( f (A,C_{\star })\supseteq f (B,C_{\star })\) and hence \( cont _{f}(A,C_{\star })\ge cont _{f}(B,C_{\star })\). Since \(\phi \) is positive, it follows that \( vs _{\phi }(A)=-\phi cont _{f}(A,C_{\star })\le -\phi cont _{f}(B,C_{\star })= vs _{\phi }(B)\). \(\square \)
 
13
Proof If \(A\) is true, then \( vs _{\phi }(A)= cont _{t}(A,C_{\star })\); if \(B\) is completely false, then \( vs _{\phi }(B)=-\phi cont _{f}(B,C_{\star })\); since \(\phi \) is positive, it follows that \( vs _{\phi }(A)> vs _{\phi }(B)\).
 
14
Proof sketch When \(A\) is a c-statement, the constituents in its range are \(2^{n-k_A}\); it follows that \( vac (A)=2^{n-k_A} / 2n\), i.e., \(1 / 2^{k_A}\). Thus, among true c-statements, \( cont _{S}(A)=1-1 / 2^{k_A}\) co-varies with the degree of basic content of \(A\), \( b (A)=k_A / n\). As far as false c-statements are concerned, since \( inacc (A)=1- acc (A)\), \( cont _{S}\) co-varies with the accuracy of \(A\). \(\square \)
 
15
Note that, by definition, a c-statement can not be contradictory; hence, \( cont _{S}^{*}\) is undefined for contradictions. Of course, it is always possible to stipulate, as Floridi does, that contradictions have a minimum degree of SSI.
 
16
Note again that \( cont _{t}\) is undefined for contradictions, which can be assigned a minimum degree of SSI by stipulation. Interestingly, an argument to this effect was already proposed by Hilpinen [17, p. 30].
 
17
I thank Gerhard Schurz for raising this point in discussion during the Trends in Logic XI conference.
 
18
Usually, \(\varDelta _{}(C_i,C_j)\) is identified with the so-called normalized Hamming distance (or Dalal distance, as it is also known in the field of AI), i.e., with the number of literals on which \(C_i\) and \(C_j\) disagree, divided by the total number \(n\) of atomic sentences.
 
19
Proof Note that, if \(A\) is a c-statement, all constituents \(C_i\) in the range of \(A\) (which are c-statements themselves) are “completions” of \(A\) in the sense that \( b (A)\subset b (C_i)\). The constituent in \(R(A)\) farthest from \(C_{\star }\) will be the one which makes all possible additional mistakes besides the mistakes already made by \(A\): this means that \(\varDelta _{ max }(A,C_{\star })=1-\frac{t_A}{n}\). It follows by (7) that \( pt (A)=1-(1-\frac{t_A}{n})= cont _{t}(A,C_{\star })\). \(\square \)
 
20
This is still clearer if one consider the generalization of the definition above to arbitrary (non-conjunctive) statements \(A\). Given (18), the misinformation conveyed by \(A\) is given by \(1- pt (A)=\varDelta _{ max }(A,C_{\star })\), that reduces to \( misinf (A)\) as far as c-statements are concerned (the proof is straightforward, see footnote 19).
 
Literature
1.
go back to reference Barwise, J. (1997). Information and impossibilities. Notre Dame Journal of Formal Logic, 38(4), 488–515.CrossRef Barwise, J. (1997). Information and impossibilities. Notre Dame Journal of Formal Logic, 38(4), 488–515.CrossRef
2.
go back to reference Bremer, M., & Cohnitz, D. (2004). Information and information flow: An introduction. Frankfurt: Ontos Verlag.CrossRef Bremer, M., & Cohnitz, D. (2004). Information and information flow: An introduction. Frankfurt: Ontos Verlag.CrossRef
3.
go back to reference Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press. Carnap, R. (1950). Logical foundations of probability. Chicago: University of Chicago Press.
4.
go back to reference Carnap, R., & Bar-Hillel, Y. (1952). An outline of a theory of semantic information. Technical Report 247, MIT Research Laboratory of Electronics. Carnap, R., & Bar-Hillel, Y. (1952). An outline of a theory of semantic information. Technical Report 247, MIT Research Laboratory of Electronics.
6.
go back to reference Cevolani, G., Crupi, V., & Festa, R. (2011). Verisimilitude and belief change for conjunctive theories. Erkenntnis, 75(2), 183–202.CrossRef Cevolani, G., Crupi, V., & Festa, R. (2011). Verisimilitude and belief change for conjunctive theories. Erkenntnis, 75(2), 183–202.CrossRef
7.
go back to reference D’Agostino, M., & Floridi, L. (2009). The enduring scandal of deduction. Synthese, 167(2), 271–315. D’Agostino, M., & Floridi, L. (2009). The enduring scandal of deduction. Synthese, 167(2), 271–315.
8.
go back to reference D’Alfonso, S. (2011). On quantifying semantic information. Information, 2(1), 61–101. D’Alfonso, S. (2011). On quantifying semantic information. Information, 2(1), 61–101.
9.
go back to reference Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT Press. Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT Press.
10.
go back to reference Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines, 14(2), 197–221.CrossRef Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines, 14(2), 197–221.CrossRef
11.
go back to reference Floridi, L. (2005). Is semantic information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–70.CrossRef Floridi, L. (2005). Is semantic information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–70.CrossRef
12.
go back to reference Floridi, L. (2007). In defence of the veridical nature of semantic information. European Journal of Analytic Philosophy, 3(1), 31–1. Floridi, L. (2007). In defence of the veridical nature of semantic information. European Journal of Analytic Philosophy, 3(1), 31–1.
13.
go back to reference Floridi, L. (2011a). The philosophy of information. Oxford: Oxford University Press.CrossRef Floridi, L. (2011a). The philosophy of information. Oxford: Oxford University Press.CrossRef
15.
go back to reference Frické, M. (1997). Information using likeness measures. Journal of the American Society for Information Science, 48(10), 882–892.CrossRef Frické, M. (1997). Information using likeness measures. Journal of the American Society for Information Science, 48(10), 882–892.CrossRef
16.
go back to reference Grice, H. P. (1989). Studies in the way of words. Cambridge: Harvard University Press. Grice, H. P. (1989). Studies in the way of words. Cambridge: Harvard University Press.
17.
go back to reference Hilpinen, R. (1976). Approximate truth and truthlikeness. In M. Przełecki, K. Szaniawski & R. Wójcicki (Eds.), Formal methods in the methodology of the empirical sciences (pp. 19–42). Dordrecht: Reidel. Hilpinen, R. (1976). Approximate truth and truthlikeness. In M. Przełecki, K. Szaniawski & R. Wójcicki (Eds.), Formal methods in the methodology of the empirical sciences (pp. 19–42). Dordrecht: Reidel.
18.
go back to reference Hintikka, J. (1968). The varieties of information and scientific explanation. In B. V. Rootselaar & J. Staal (Eds.), Logic, methodology and philosophy of science III (Vol. 52, pp. 311–331). Amsterdam: Elsevier. Hintikka, J. (1968). The varieties of information and scientific explanation. In B. V. Rootselaar & J. Staal (Eds.), Logic, methodology and philosophy of science III (Vol. 52, pp. 311–331). Amsterdam: Elsevier.
19.
go back to reference Hintikka, J. (1970). Surface information and depth information. In J. Hintikka & P. Suppes (Eds.), Information and inference, (pp. 263–297). Dordrecht: Reidel. Hintikka, J. (1970). Surface information and depth information. In J. Hintikka & P. Suppes (Eds.), Information and inference, (pp. 263–297). Dordrecht: Reidel.
20.
go back to reference Hintikka, J. (1973). Logic, language-games and information. Oxford: Oxford University Press. Hintikka, J. (1973). Logic, language-games and information. Oxford: Oxford University Press.
21.
go back to reference Kuipers, T. A. F. (2000). From instrumentalism to constructive realism. Dordrecht: Kluwer Academic Publishers.CrossRef Kuipers, T. A. F. (2000). From instrumentalism to constructive realism. Dordrecht: Kluwer Academic Publishers.CrossRef
22.
go back to reference Kuipers, T. A. F. (2006). Inductive aspects of confirmation, information and content. In R. E. Auxier & L. E. Hahn (Eds.), The philosophy of Jaakko Hintikka (pp. 855–883). Chicago and La Salle: Open Courts. Kuipers, T. A. F. (2006). Inductive aspects of confirmation, information and content. In R. E. Auxier & L. E. Hahn (Eds.), The philosophy of Jaakko Hintikka (pp. 855–883). Chicago and La Salle: Open Courts.
23.
go back to reference Levi, I. (1967). Gambling with truth. New York: Alfred A. Knopf. Levi, I. (1967). Gambling with truth. New York: Alfred A. Knopf.
27.
go back to reference Popper, K. R. (1934). Logik der Forschung. Vienna: Julius Springer [revised edition: The logic of scientific discovery. London: Routledge, 2002 (Hutchinson, London, 1959)]. Popper, K. R. (1934). Logik der Forschung. Vienna: Julius Springer [revised edition: The logic of scientific discovery. London: Routledge, 2002 (Hutchinson, London, 1959)].
28.
go back to reference Popper, K. R. (1963). Conjectures and refutations (3rd ed.). London: Routledge and Kegan Paul. Popper, K. R. (1963). Conjectures and refutations (3rd ed.). London: Routledge and Kegan Paul.
29.
go back to reference Schurz, G., & Weingartner, P. (2010). Zwart and franssen’s impossibility theorem holds for possible-world-accounts but not for consequence-accounts to verisimilitude. Synthese, 172, 415–436.CrossRef Schurz, G., & Weingartner, P. (2010). Zwart and franssen’s impossibility theorem holds for possible-world-accounts but not for consequence-accounts to verisimilitude. Synthese, 172, 415–436.CrossRef
30.
go back to reference Sequoiah-Grayson, S. (2007). The metaphilosophy of information. Minds and Machines, 17(3), 331–44.CrossRef Sequoiah-Grayson, S. (2007). The metaphilosophy of information. Minds and Machines, 17(3), 331–44.CrossRef
31.
go back to reference Sequoiah-Grayson, S. (2008). The scandal of deduction. Journal of Philosophical Logic, 37(1), 67–94.CrossRef Sequoiah-Grayson, S. (2008). The scandal of deduction. Journal of Philosophical Logic, 37(1), 67–94.CrossRef
32.
go back to reference Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656. Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423, 623–656.
Metadata
Title
Strongly Semantic Information as Information About the Truth
Author
Gustavo Cevolani
Copyright Year
2014
DOI
https://doi.org/10.1007/978-3-319-06080-4_5

Premium Partner