Skip to main content
Top

2024 | OriginalPaper | Chapter

Structural Scheme of an Electromagnetoelastic Actuator for Nanotechnology Research

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An electromagnetoelastic actuator is electromagnetomechanical device, intended for actuation of mechanisms, systems or management, based on the piezoelectric, piezomagnetic, electrostriction, magnetostriction effects, converts electric or magnetic signals into mechanical movement and force. The piezo actuator is used in vibration compensation and absorption systems in aircraft and rotorcraft elements, in nanotechnology research for scanning microscopy, in laser systems and ring gyroscopes. The structural scheme of an electromagnetoelastic actuator for nanotechnology research is constructed by using the equation of electromagnetoelasticity and the linear ordinary second-order differential equation of the actuator under various boundary conditions. An electromagnetoelastic actuator is using in nanotechnology, microelectronics, nanobiology, astronomy, nanophysics for the alignment, the reparation of the gravitation and temperature deformations. The nanomanipulator with the piezo actuator is applied in the matching systems in nanotechnology. In the present work, the problem of building the structural scheme of the electromagnetoelastic actuator is solving in difference from Mason’s electrical equivalent circuit. The transformation of the structural scheme under various boundary conditions of the actuator is considered. The matrix transfer function is calculated from the set of equations for the structural scheme of the electromagnetoelastic actuator in control system. This matrix transfer function for the deformation of the actuator is used in nanotechnology research. The structural schemes and the elastic compliances of the piezo actuators are obtained by voltage or current control. The structural scheme of the magnetostriction actuator is constructed for nanotechnology research. The characteristics of the piezo actuator are determined. The structural scheme of the piezo actuator with the back electromotive force is obtained. The transformation of the elastic compliances of the piezo actuators is considered for the voltage and current control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Schultz, J., Ueda, J., Asada, H.: Cellular Actuators. Butterworth-Heinemann Publisher, Oxford (2017) Schultz, J., Ueda, J., Asada, H.: Cellular Actuators. Butterworth-Heinemann Publisher, Oxford (2017)
2.
go back to reference Afonin, S.M.: Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Dokl. Math. 74(3), 943–948 (2006)CrossRef Afonin, S.M.: Absolute stability conditions for a system controlling the deformation of an elecromagnetoelastic transduser. Dokl. Math. 74(3), 943–948 (2006)CrossRef
3.
go back to reference Uchino, K.: Piezoelectric Actuator and Ultrasonic Motors. Kluwer Academic Publisher, Boston (1997) Uchino, K.: Piezoelectric Actuator and Ultrasonic Motors. Kluwer Academic Publisher, Boston (1997)
4.
go back to reference Afonin, S.M.: Generalized parametric structural model of a compound elecromagnetoelastic transduser. Dokl. Phys. 50(2), 77–82 (2005)CrossRef Afonin, S.M.: Generalized parametric structural model of a compound elecromagnetoelastic transduser. Dokl. Phys. 50(2), 77–82 (2005)CrossRef
5.
go back to reference Afonin, S.M.: Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl. Phys. 53(3), 137–143 (2008)CrossRef Afonin, S.M.: Structural parametric model of a piezoelectric nanodisplacement transducer. Dokl. Phys. 53(3), 137–143 (2008)CrossRef
6.
go back to reference Afonin, S.M.: Solution of the wave equation for the control of an elecromagnetoelastic transduser. Dokl. Math. 73(2), 307–313 (2006)CrossRef Afonin, S.M.: Solution of the wave equation for the control of an elecromagnetoelastic transduser. Dokl. Math. 73(2), 307–313 (2006)CrossRef
7.
go back to reference Cady, W.G.: Piezoelectricity: An Introduction to the Theory and Applications of Eectromechanical Phenomena in Crystals. McGraw-Hill Book Company, New York, London (1946) Cady, W.G.: Piezoelectricity: An Introduction to the Theory and Applications of Eectromechanical Phenomena in Crystals. McGraw-Hill Book Company, New York, London (1946)
8.
go back to reference Mason, W. (ed.): Physical Acoustics: Principles and Methods. Part A. Methods and Devices, vol. 1. Academic Press, New York (1964) Mason, W. (ed.): Physical Acoustics: Principles and Methods. Part A. Methods and Devices, vol. 1. Academic Press, New York (1964)
10.
go back to reference Zwillinger, D.: Handbook of Differential Equations. Academic Press, Boston (1989) Zwillinger, D.: Handbook of Differential Equations. Academic Press, Boston (1989)
11.
go back to reference Afonin, S.M.: A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. J. Comput. Syst. Sci. Int. 45(2), 317–325 (2006)CrossRef Afonin, S.M.: A generalized structural-parametric model of an elecromagnetoelastic converter for nano- and micrometric movement control systems: III. Transformation parametric structural circuits of an elecromagnetoelastic converter for nano- and micrometric movement control systems. J. Comput. Syst. Sci. Int. 45(2), 317–325 (2006)CrossRef
12.
go back to reference Afonin, S.M.: Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9. In: Parinov, I.A. (ed.) Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications, pp. 225–242. Nova Science, New York (2015) Afonin, S.M.: Structural-parametric model and transfer functions of electroelastic actuator for nano- and microdisplacement. Chapter 9. In: Parinov, I.A. (ed.) Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications, pp. 225–242. Nova Science, New York (2015)
13.
go back to reference Afonin, S.M.: Electromagnetoelastic nano- and microactuators for mechatronic systems. Russ. Eng. Res. 38(12), 938–944 (2018)CrossRef Afonin, S.M.: Electromagnetoelastic nano- and microactuators for mechatronic systems. Russ. Eng. Res. 38(12), 938–944 (2018)CrossRef
14.
go back to reference Afonin, S.M.: Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators 7(1), 1–9 (2018)CrossRef Afonin, S.M.: Structural-parametric model of electromagnetoelastic actuator for nanomechanics. Actuators 7(1), 1–9 (2018)CrossRef
15.
go back to reference Afonin, S.M.: Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 8(3), 1–14 (2019)CrossRef Afonin, S.M.: Structural-parametric model and diagram of a multilayer electromagnetoelastic actuator for nanomechanics. Actuators 8(3), 1–14 (2019)CrossRef
16.
go back to reference Afonin, S.M.: Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl. Syst. Innov. 3(4), 1–7 (2020) Afonin, S.M.: Optimal control of a multilayer electroelastic engine with a longitudinal piezoeffect for nanomechatronics systems. Appl. Syst. Innov. 3(4), 1–7 (2020)
17.
go back to reference Afonin, S.M.: Coded control of a sectional electroelastic engine for nanomechatronics systems. Appl. Syst. Innov. 4(3), 1–11 (2021) Afonin, S.M.: Coded control of a sectional electroelastic engine for nanomechatronics systems. Appl. Syst. Innov. 4(3), 1–11 (2021)
18.
go back to reference Afonin, S.M.: Electromagnetoelastic actuator for large telescopes. Aeronaut. Aerosp. Open Access J. 2(5), 270–272 (2018) Afonin, S.M.: Electromagnetoelastic actuator for large telescopes. Aeronaut. Aerosp. Open Access J. 2(5), 270–272 (2018)
19.
go back to reference Afonin, S.M.: Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ Appl. Bionics Biomech. 5(2), 36–39 (2021)CrossRef Afonin, S.M.: Structural scheme of electromagnetoelastic actuator for nano biomechanics. MOJ Appl. Bionics Biomech. 5(2), 36–39 (2021)CrossRef
20.
go back to reference Afonin, S.M.: Piezo engine for nano biomedical science. Open Access J. Biomed. Sci. 4(5), 2057–2059 (2022) Afonin, S.M.: Piezo engine for nano biomedical science. Open Access J. Biomed. Sci. 4(5), 2057–2059 (2022)
21.
go back to reference Afonin, S.M.: Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. In: Parinov, I.A., Chang, SH., Soloviev, A.N. (eds.) Physics and Mechanics of New Materials and Their Applications. Springer Proceedings in Materials, vol. 20, pp. 419–428. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-21572-8_34 Afonin, S.M.: Harmonious linearization of hysteresis characteristic of an electroelastic actuator for nanomechatronics systems. In: Parinov, I.A., Chang, SH., Soloviev, A.N. (eds.) Physics and Mechanics of New Materials and Their Applications. Springer Proceedings in Materials, vol. 20, pp. 419–428. Springer, Cham (2023). https://​doi.​org/​10.​1007/​978-3-031-21572-8_​34
22.
go back to reference Afonin, S.M.: Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ. Eng. Res. 41(4), 285–288 (2021)CrossRef Afonin, S.M.: Rigidity of a multilayer piezoelectric actuator for the nano and micro range. Russ. Eng. Res. 41(4), 285–288 (2021)CrossRef
23.
go back to reference Afonin, S.M.: Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2. In: Min, H.S. (ed.) Recent Progress in Chemical Science Research, vol. 6, pp. 15–27. BP International, India, London (2023) Afonin, S.M.: Electroelastic actuator of nanomechatronics systems for nanoscience. Chapter 2. In: Min, H.S. (ed.) Recent Progress in Chemical Science Research, vol. 6, pp. 15–27. BP International, India, London (2023)
24.
go back to reference Nalwa, H.S. (ed.): Encyclopedia of Nanoscience and Nanotechnology, vol. 10. American Scientific Publishers, Los Angeles (2004) Nalwa, H.S. (ed.): Encyclopedia of Nanoscience and Nanotechnology, vol. 10. American Scientific Publishers, Los Angeles (2004)
Metadata
Title
Structural Scheme of an Electromagnetoelastic Actuator for Nanotechnology Research
Author
S. M. Afonin
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-52239-0_45