Skip to main content
Top

2018 | OriginalPaper | Chapter

9. Structure Determination by Continuous Diffraction from Imperfect Crystals

Authors : Kartik Ayyer, Oleksandr M. Yefanov, Henry N. Chapman

Published in: X-ray Free Electron Lasers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The coherent diffraction pattern of a non-periodic finite object does not consist of Bragg peaks but is continuously and smoothly varying. Such patterns do not suffer from the well-known phase problem of crystallography. In this case, robust iterative algorithms exist to determine the electron density of the object from the diffraction pattern alone. Continuous diffraction is accessible from ensembles of aligned molecules, including disordered protein crystals. We discuss the application of the concepts of coherent diffractive imaging to such cases and describe the experimental considerations to adequately measure the weak continuous diffraction signals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Throughout this chapter we will use the indices abc to uniquely distinguish atom a of rigid body b in unit cell c. When it is not needed to report on which body or cell an atom is part of, we just use the index i.
 
2
Although \({\mathbf {C}}_{ac\,a'c'}\) runs over four subscripts, this is really two dimensional, since any given atom in the crystal is specified by the indices ac (or a′c′) specifying which atom a in the molecule and which unit cell c in the crystal.
 
Literature
1.
go back to reference Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530, 202–206.CrossRef Ayyer, K., Yefanov, O. M., Oberthür, D., Roy-Chowdhury, S., Galli, L., Mariani, V., et al. (2016). Macromolecular diffractive imaging using imperfect crystals. Nature, 530, 202–206.CrossRef
2.
go back to reference Bates, R. H. T. (1982). Fourier phase problems are uniquely solvable in more than one dimension: 1. Underlying theory. Optik, 61, 247–262. Bates, R. H. T. (1982). Fourier phase problems are uniquely solvable in more than one dimension: 1. Underlying theory. Optik, 61, 247–262.
3.
go back to reference Bernal, J. D., Fankuchen, I., & Perutz, M. (1938). An X-ray study of chymotrypsin and hæmoglobin. Nature, 141, 523–524.CrossRef Bernal, J. D., Fankuchen, I., & Perutz, M. (1938). An X-ray study of chymotrypsin and hæmoglobin. Nature, 141, 523–524.CrossRef
4.
go back to reference Bragg, W. L., & Perutz, M. F. (1952). The structure of hæmoglobin. Proceedings of the Royal Society of London, 213, 425–435. Bragg, W. L., & Perutz, M. F. (1952). The structure of hæmoglobin. Proceedings of the Royal Society of London, 213, 425–435.
5.
go back to reference Bruck, Y., & Sodin, L. (1979). On the ambiguity of the image reconstruction problem. Optics Communication, 30, 304–308.CrossRef Bruck, Y., & Sodin, L. (1979). On the ambiguity of the image reconstruction problem. Optics Communication, 30, 304–308.CrossRef
6.
go back to reference Caleman, C., Tîmneanu, N., Martin, A. V., Jönsson, H. O., Aquila, A., Barty, A., et al. (2015). Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser. Optics Express, 23, 1213–1231.CrossRef Caleman, C., Tîmneanu, N., Martin, A. V., Jönsson, H. O., Aquila, A., Barty, A., et al. (2015). Ultrafast self-gating Bragg diffraction of exploding nanocrystals in an X-ray laser. Optics Express, 23, 1213–1231.CrossRef
7.
go back to reference Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional X-ray diffraction microscopy. Journal of the Optical Society of America A, 23, 1179–1200.CrossRef Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P., Cui, C., et al. (2006). High-resolution ab initio three-dimensional X-ray diffraction microscopy. Journal of the Optical Society of America A, 23, 1179–1200.CrossRef
8.
go back to reference Chapman, H. N., Yefanov, O. M., Ayyer, K., White, T. A., Barty, A., Morgan, A., et al. (2017). Continuous diffraction of molecules and disordered molecular crystals. Journal of Applied Crystallography, 50, 1084–1103.CrossRef Chapman, H. N., Yefanov, O. M., Ayyer, K., White, T. A., Barty, A., Morgan, A., et al. (2017). Continuous diffraction of molecules and disordered molecular crystals. Journal of Applied Crystallography, 50, 1084–1103.CrossRef
9.
go back to reference Clarage, J. B., Clarage, M. S., Phillips, W. C., Sweet, R. M., & Caspar, D. L. D. (1992). Correlations of atomic movements in lysozyme crystals. Proteins: Structure, Function, and Bioinformatics, 12(2), 145–157.CrossRef Clarage, J. B., Clarage, M. S., Phillips, W. C., Sweet, R. M., & Caspar, D. L. D. (1992). Correlations of atomic movements in lysozyme crystals. Proteins: Structure, Function, and Bioinformatics, 12(2), 145–157.CrossRef
10.
go back to reference Cowley, J. M. (1981). Diffraction physics. Amsterdam: North-Holland. Cowley, J. M. (1981). Diffraction physics. Amsterdam: North-Holland.
11.
go back to reference Cowtan, K. (1998). Introduction to density modification. In Direct methods for solving macromolecular structures. Dordrecht: Springer.CrossRef Cowtan, K. (1998). Introduction to density modification. In Direct methods for solving macromolecular structures. Dordrecht: Springer.CrossRef
12.
go back to reference Crimmins, T. R., Fienup, J., & Thelen, B. J. (1990). Improved bounds on object support from autocorrelation support and application to phase retrieval. Journal of the Optical Society of America A, 7, 3–13.CrossRef Crimmins, T. R., Fienup, J., & Thelen, B. J. (1990). Improved bounds on object support from autocorrelation support and application to phase retrieval. Journal of the Optical Society of America A, 7, 3–13.CrossRef
13.
go back to reference Crowther, R., DeRosier, D., & Klug, A. (1970). The reconstruction of a three-dimensional structure from its projections and its applications to electron microscopy. Proceedings of the Royal Society of London, 317, 319–340. Crowther, R., DeRosier, D., & Klug, A. (1970). The reconstruction of a three-dimensional structure from its projections and its applications to electron microscopy. Proceedings of the Royal Society of London, 317, 319–340.
14.
go back to reference Elser, V. (2003). Phase retrieval by iterated projections. Journal of the Optical Society of America A, 20, 40–55.CrossRef Elser, V. (2003). Phase retrieval by iterated projections. Journal of the Optical Society of America A, 20, 40–55.CrossRef
15.
go back to reference Elser, V. (2013). Direct phasing of nanocrystal diffraction. Acta Crystallographica Section A, 69, 559–569.CrossRef Elser, V. (2013). Direct phasing of nanocrystal diffraction. Acta Crystallographica Section A, 69, 559–569.CrossRef
16.
go back to reference Elser, V., & Millane, R. P. (2008). Reconstruction of an object from its symmetry-averaged diffraction pattern. Acta Crystallographica Section A, 64, 273–279.CrossRef Elser, V., & Millane, R. P. (2008). Reconstruction of an object from its symmetry-averaged diffraction pattern. Acta Crystallographica Section A, 64, 273–279.CrossRef
17.
go back to reference Fienup, J. R. (1978). Reconstruction of an object from the modulus of its Fourier transform. Optics Letters, 3, 27–29.CrossRef Fienup, J. R. (1978). Reconstruction of an object from the modulus of its Fourier transform. Optics Letters, 3, 27–29.CrossRef
18.
go back to reference Fienup, J. R. (1982). Phase retrieval algorithms: a comparison. Applied Optics, 21, 2758–2769.CrossRef Fienup, J. R. (1982). Phase retrieval algorithms: a comparison. Applied Optics, 21, 2758–2769.CrossRef
19.
go back to reference Flewett, S., Quiney, H. M., Tran, C. Q., & Nugent, K. A. (2009). Extracting coherent modes from partially coherent wavefields. Optics Letters, 34, 2198–2200.CrossRef Flewett, S., Quiney, H. M., Tran, C. Q., & Nugent, K. A. (2009). Extracting coherent modes from partially coherent wavefields. Optics Letters, 34, 2198–2200.CrossRef
20.
go back to reference French, S., & Wilson, K. (1978). On the treatment of negative intensity observations. Acta Crystallographica Section A, 34, 517–525.CrossRef French, S., & Wilson, K. (1978). On the treatment of negative intensity observations. Acta Crystallographica Section A, 34, 517–525.CrossRef
21.
go back to reference Gerchberg, R. W., & Saxton, O. (1972). Practical algorithm for determination of phase from image and diffraction plane pictures. Optik, 35, 237–246. Gerchberg, R. W., & Saxton, O. (1972). Practical algorithm for determination of phase from image and diffraction plane pictures. Optik, 35, 237–246.
22.
go back to reference He, H., & Su, W.-P. (2015). Direct phasing of protein crystals with high solvent content. Acta Crystallographica Section A, 71, 92–98.CrossRef He, H., & Su, W.-P. (2015). Direct phasing of protein crystals with high solvent content. Acta Crystallographica Section A, 71, 92–98.CrossRef
23.
go back to reference He, H., Fang, H., Miller, M. D., Phillips, G. N. Jr., & Su, W.-P. (2016). Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm. Acta Crystallographica Section A, 72, 539–547.CrossRef He, H., Fang, H., Miller, M. D., Phillips, G. N. Jr., & Su, W.-P. (2016). Improving the efficiency of molecular replacement by utilizing a new iterative transform phasing algorithm. Acta Crystallographica Section A, 72, 539–547.CrossRef
24.
go back to reference Hensley, C. J., Yang, J., & Centurion, M. (2012). Imaging of isolated molecules with ultrafast electron pulses. Physical Review Letters, 109, 133, 202. Hensley, C. J., Yang, J., & Centurion, M. (2012). Imaging of isolated molecules with ultrafast electron pulses. Physical Review Letters, 109, 133, 202.
25.
go back to reference Howells, M. R., Beetz, T., Chapman, H. N., Cui, C., Holton, J. M., Jacobsen, C. J., et al. (2009). An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. Journal of Electron Spectroscopy and Related Phenomena, 170, 4–12.CrossRef Howells, M. R., Beetz, T., Chapman, H. N., Cui, C., Holton, J. M., Jacobsen, C. J., et al. (2009). An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy. Journal of Electron Spectroscopy and Related Phenomena, 170, 4–12.CrossRef
26.
go back to reference Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica Section D, 66, 133–144.CrossRef Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. Acta Crystallographica Section D, 66, 133–144.CrossRef
27.
go back to reference Kewish, C. M., Thibault, P., Bunk, O., & Pfeiffer, F. (2010). The potential for two-dimensional crystallography of membrane proteins at future X-ray free-electron laser sources. New Journal of Physics, 12, 035,005.CrossRef Kewish, C. M., Thibault, P., Bunk, O., & Pfeiffer, F. (2010). The potential for two-dimensional crystallography of membrane proteins at future X-ray free-electron laser sources. New Journal of Physics, 12, 035,005.CrossRef
28.
go back to reference Marchesini, S. (2007). A unified evaluation of iterative projection algorithms for phase retrieval. The Review of Scientific Instruments, 78, 011301.CrossRef Marchesini, S. (2007). A unified evaluation of iterative projection algorithms for phase retrieval. The Review of Scientific Instruments, 78, 011301.CrossRef
29.
go back to reference Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68, 140,101.CrossRef Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A., Howells, M. R., et al. (2003). X-ray image reconstruction from a diffraction pattern alone. Physical Review B, 68, 140,101.CrossRef
30.
go back to reference Miao, J., Sayre, D., & Chapman, H. N. (1998). Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. Journal of the Optical Society of America A, 15, 1662–1669.CrossRef Miao, J., Sayre, D., & Chapman, H. N. (1998). Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. Journal of the Optical Society of America A, 15, 1662–1669.CrossRef
31.
go back to reference Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342–344.CrossRef Miao, J., Charalambous, P., Kirz, J., & Sayre, D. (1999). Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature, 400, 342–344.CrossRef
32.
go back to reference Millane, R. P. (1990). Phase retrieval in crystallography and optics. Journal of the Optical Society of America A, 7, 394–411.CrossRef Millane, R. P. (1990). Phase retrieval in crystallography and optics. Journal of the Optical Society of America A, 7, 394–411.CrossRef
33.
go back to reference Millane, R. P. (2017). The phase problem for one-dimensional crystals. Acta Crystallographica Section A, 73, 140–150.CrossRef Millane, R. P. (2017). The phase problem for one-dimensional crystals. Acta Crystallographica Section A, 73, 140–150.CrossRef
34.
go back to reference Millane, R. P., & Lo, V. L. (2013). Iterative projection algorithms in protein crystallography. I. Theory. Acta Crystallographica Section A, 69, 517–527.CrossRef Millane, R. P., & Lo, V. L. (2013). Iterative projection algorithms in protein crystallography. I. Theory. Acta Crystallographica Section A, 69, 517–527.CrossRef
35.
go back to reference Mizuguchi, K., Kidera, A., & Gō, N. (1994). Collective motions in proteins investigated by X-ray diffuse scattering. Proteins: Structure, Function, and Bioinformatics, 18, 34–48.CrossRef Mizuguchi, K., Kidera, A., & Gō, N. (1994). Collective motions in proteins investigated by X-ray diffuse scattering. Proteins: Structure, Function, and Bioinformatics, 18, 34–48.CrossRef
36.
go back to reference Moore, P. B. (2009). On the relationship between diffraction patterns and motions in macromolecular crystals. Structure, 17, 1307–1315.CrossRef Moore, P. B. (2009). On the relationship between diffraction patterns and motions in macromolecular crystals. Structure, 17, 1307–1315.CrossRef
37.
go back to reference Oberthuer, D., Knoška, J., Wiedorn, M. O., Beyerlein, K. R., Bushnell, D. A., Kovaleva, E. G., et al. (2017). Double-flow focused liquid injector for efficient serial femtosecond crystallography. Scientific Reports, 7, 44628.CrossRef Oberthuer, D., Knoška, J., Wiedorn, M. O., Beyerlein, K. R., Bushnell, D. A., Kovaleva, E. G., et al. (2017). Double-flow focused liquid injector for efficient serial femtosecond crystallography. Scientific Reports, 7, 44628.CrossRef
38.
go back to reference Oszlanyi, G., & Suto, A. (2004). Ab initio structure solution by charge flipping. Acta Crystallographica Section A, 60, 134–141. Oszlanyi, G., & Suto, A. (2004). Ab initio structure solution by charge flipping. Acta Crystallographica Section A, 60, 134–141.
39.
go back to reference Peck, A., Poitevin, F., & Lane, T. J. (2018). Intermolecular correlations are necessary to explain diffuse scattering from protein crystals. IUCrJ, 5, 211–222.CrossRef Peck, A., Poitevin, F., & Lane, T. J. (2018). Intermolecular correlations are necessary to explain diffuse scattering from protein crystals. IUCrJ, 5, 211–222.CrossRef
40.
go back to reference Rees, D. C. (1980). The influence of twinning by merohedry on intensity statistics. Acta Crystallographica Section A, 36, 578–581.CrossRef Rees, D. C. (1980). The influence of twinning by merohedry on intensity statistics. Acta Crystallographica Section A, 36, 578–581.CrossRef
41.
go back to reference Sayre, D. (2002). X-ray crystallography: The past and present of the phase problem. Structural Chemistry, 13, 81–96.CrossRef Sayre, D. (2002). X-ray crystallography: The past and present of the phase problem. Structural Chemistry, 13, 81–96.CrossRef
42.
go back to reference Schmidt, E., & Neder, R. B. (2017). Diffuse single-crystal scattering corrected for molecular form factor effects. Acta Crystallographica Section A, 73, 231–237.CrossRef Schmidt, E., & Neder, R. B. (2017). Diffuse single-crystal scattering corrected for molecular form factor effects. Acta Crystallographica Section A, 73, 231–237.CrossRef
43.
go back to reference Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37, 10–21.CrossRef Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37, 10–21.CrossRef
44.
go back to reference Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., et al. (2005). Biological imaging by soft X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 102, 15343–15346.CrossRef Shapiro, D., Thibault, P., Beetz, T., Elser, V., Howells, M., Jacobsen, C., et al. (2005). Biological imaging by soft X-ray diffraction microscopy. Proceedings of the National Academy of Sciences, 102, 15343–15346.CrossRef
45.
go back to reference Simonov, A., Weber, T., & Steurer, W. (2014). Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. Journal of Applied Crystallography, 47, 2011–2018.CrossRef Simonov, A., Weber, T., & Steurer, W. (2014). Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. Journal of Applied Crystallography, 47, 2011–2018.CrossRef
46.
go back to reference Simonov, A., Weber, T., & Goodwin, A. (2017). Single crystal diffuse scattering—A solution to the phase problem? Acta Crystallographica Section A, 73, C1045.CrossRef Simonov, A., Weber, T., & Goodwin, A. (2017). Single crystal diffuse scattering—A solution to the phase problem? Acta Crystallographica Section A, 73, C1045.CrossRef
47.
go back to reference Spence, J. C. H., Weierstall, U., Fricke, T. T., Glaeser, R. M., & Downing, K. H. (2003). Three-dimensional diffractive imaging for crystalline monolayers with one-dimensional compact support. Journal of Structural Biology, 144, 209–218.CrossRef Spence, J. C. H., Weierstall, U., Fricke, T. T., Glaeser, R. M., & Downing, K. H. (2003). Three-dimensional diffractive imaging for crystalline monolayers with one-dimensional compact support. Journal of Structural Biology, 144, 209–218.CrossRef
48.
go back to reference Spence, J. C. H., & Doak, R. B. (2004). Single molecule diffraction. Physical Review Letters, 92, 198102.CrossRef Spence, J. C. H., & Doak, R. B. (2004). Single molecule diffraction. Physical Review Letters, 92, 198102.CrossRef
49.
go back to reference Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T. et al. (2011) Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19, 2866–2873.CrossRef Spence, J. C. H., Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., White, T. et al. (2011) Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals. Optics Express, 19, 2866–2873.CrossRef
50.
go back to reference Stroud, R. M., & Agard, D. A. (1979). Structure determination of asymmetric membrane profiles using an iterative Fourier method. Biophysical Journal, 25, 495–512.CrossRef Stroud, R. M., & Agard, D. A. (1979). Structure determination of asymmetric membrane profiles using an iterative Fourier method. Biophysical Journal, 25, 495–512.CrossRef
51.
go back to reference Szoke, A. (1999). Time-resolved holographic diffraction at atomic resolution. Chemical Physics Letters, 313, 778–788.CrossRef Szoke, A. (1999). Time-resolved holographic diffraction at atomic resolution. Chemical Physics Letters, 313, 778–788.CrossRef
52.
go back to reference Szoke, A. (2001). Diffraction of partially coherent X-rays and the crystallographic phase problem. Acta Crystallographica Section A, 57, 586–603.CrossRef Szoke, A. (2001). Diffraction of partially coherent X-rays and the crystallographic phase problem. Acta Crystallographica Section A, 57, 586–603.CrossRef
53.
go back to reference von Laue, M. (1936). The external shape of crystals and its influence on interference phenomena in crystalline lattices. Annales de Physique, 26, 55–68.CrossRef von Laue, M. (1936). The external shape of crystals and its influence on interference phenomena in crystalline lattices. Annales de Physique, 26, 55–68.CrossRef
54.
go back to reference Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica Section A, 51, 416. Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica Section A, 51, 416.
55.
go back to reference Welberry, T. R. (1985). Diffuse X-ray scattering models of disorder. Reports on Progress in Physics, 48, 1543–1593.CrossRef Welberry, T. R. (1985). Diffuse X-ray scattering models of disorder. Reports on Progress in Physics, 48, 1543–1593.CrossRef
56.
go back to reference White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: a software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45, 335–341.CrossRef White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty, A., et al. (2012). CrystFEL: a software suite for snapshot serial crystallography. Journal of Applied Crystallography, 45, 335–341.CrossRef
57.
go back to reference White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49, 680–689.CrossRef White, T. A., Mariani, V., Brehm, W., Yefanov, O., Barty, A., Beyerlein, K. R., et al. (2016). Recent developments in CrystFEL. Journal of Applied Crystallography, 49, 680–689.CrossRef
58.
go back to reference Whitehead, L. W., Williams, G. J., Quiney, H. M., Vine, D. J., Dilanian, R. A., Flewett, S., et al. (2009). Diffractive imaging using partially coherent X rays. Physical Review Letters, 103, 243902.CrossRef Whitehead, L. W., Williams, G. J., Quiney, H. M., Vine, D. J., Dilanian, R. A., Flewett, S., et al. (2009). Diffractive imaging using partially coherent X rays. Physical Review Letters, 103, 243902.CrossRef
59.
go back to reference Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Crystallographica, 2, 318–321.CrossRef Wilson, A. J. C. (1949). The probability distribution of X-ray intensities. Acta Crystallographica, 2, 318–321.CrossRef
60.
go back to reference Yefanov, O., Gati, O., Bourenkov, G., Kirian, R. A., White, T. A., Spence, J. C. H., et al. (2014). Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography. Philosophical Transactions of the Royal Society B, 369, 1647.CrossRef Yefanov, O., Gati, O., Bourenkov, G., Kirian, R. A., White, T. A., Spence, J. C. H., et al. (2014). Mapping the continuous reciprocal space intensity distribution of X-ray serial crystallography. Philosophical Transactions of the Royal Society B, 369, 1647.CrossRef
61.
go back to reference Yefanov, O., Mariani, V., Gati, C., White, T. A., Chapman, H. N., & Barty, A. (2015). Accurate determination of segmented X-ray detector geometry. Optics Express, 23, 28459–28470.CrossRef Yefanov, O., Mariani, V., Gati, C., White, T. A., Chapman, H. N., & Barty, A. (2015). Accurate determination of segmented X-ray detector geometry. Optics Express, 23, 28459–28470.CrossRef
Metadata
Title
Structure Determination by Continuous Diffraction from Imperfect Crystals
Authors
Kartik Ayyer
Oleksandr M. Yefanov
Henry N. Chapman
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00551-1_9