Skip to main content
Top
Published in: Logica Universalis 1/2020

28-02-2020

Structures of Opposition and Comparisons: Boolean and Gradual Cases

Authors: Didier Dubois, Henri Prade, Agnès Rico

Published in: Logica Universalis | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper first investigates logical characterizations of different structures of opposition that extend the square of opposition in a way or in another. Blanché’s hexagon of opposition is based on three disjoint sets. There are at least two meaningful cubes of opposition, proposed respectively by two of the authors and by Moretti, and pioneered by philosophers such as J. N. Keynes, W. E. Johnson, for the former, and H. Reichenbach for the latter. These cubes exhibit four and six squares of opposition respectively. We clarify the differences between these two cubes, and discuss their gradual extensions, as well as the one of the hexagon when vertices are no longer two-valued. The second part of the paper is dedicated to the use of these structures of opposition (hexagon, cubes) for discussing the comparison of two items. Comparing two items (objects, images) usually involves a set of relevant attributes whose values are compared, and may be expressed in terms of different modalities such as identity, similarity, difference, opposition, analogy. Recently, J.-Y. Béziau has proposed an “analogical hexagon” that organizes the relations linking these modalities. Elementary comparisons may be a matter of degree, attributes may not have the same importance. The paper studies in which ways the structure of the hexagon may be preserved in such gradual extensions. As another illustration of the graded hexagon, we start with the hexagon of equality and inequality due to R. Blanché and extend it with fuzzy equality and fuzzy inequality. Besides, the cube induced by a tetra-partition can account for the comparison of two items in terms of preference, reversed preference, indifference and non-comparability even if these notions are a matter of degree. The other cube, which organizes the relations between the different weighted qualitative aggregation modes, is more relevant for the attribute-based comparison of items in terms of similarity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In the crisp case it means \(\overline{A}\cap (A\cup B) = B\) if A and B are disjoint.
 
2
In previous papers [16, 17, 32], we wrongly credited Reichenbach [49] for inventing this cube in the setting of syllogisms, because we omitted to consider additional constraints of non-equality of involved predicates introduced by him. This point is discussed later on in the next subsection.
 
3
The actual octagon of Johnson and Keynes does not materialize the bold lines expressing mutual exclusiveness, while other lines relating A to a and E to e appear and are labeled “complementaries”; likewise, lines relating I to i and O to o appear and are labeled “sub-complementaries”. For instance, A= all P’s are Q and a = all Q’s are P complement each other in the sense that if they both hold, P and Q are identical. Interestingly, in the Reichenbach cube, both A and a, and E and e, are mutually exclusive (and called “opposite”), since P is supposed not to be equal to Q. Moreover yet other lines relating A to o, E to i, O to a and I to e are labeled “contra-complementaries”. Observe that these different forms of complementarity do not appear in the traditional square.
 
Literature
2.
go back to reference Amgoud, L., Prade, H.: A formal concept view of abstract argumentation. In: van der Gaag, L.C. (ed.) Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’13), Utrecht, July 8–10. LNCS, vol. 7952, pp. 1–12. Springer, Berlin (2013) Amgoud, L., Prade, H.: A formal concept view of abstract argumentation. In: van der Gaag, L.C. (ed.) Proceedings of the European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’13), Utrecht, July 8–10. LNCS, vol. 7952, pp. 1–12. Springer, Berlin (2013)
3.
go back to reference Barbot, N., Miclet, L., Prade, H.: A new perspective on analogical proportions. In: Kern-Isberner, G., Ognjanović, Z. (eds.) Proceedings of the 15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’19), Belgrade, Sept 18–20. LNCS 11726, pp. 163–174. Springer, Berlin (2019) Barbot, N., Miclet, L., Prade, H.: A new perspective on analogical proportions. In: Kern-Isberner, G., Ognjanović, Z. (eds.) Proceedings of the 15th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’19), Belgrade, Sept 18–20. LNCS 11726, pp. 163–174. Springer, Berlin (2019)
4.
go back to reference Barbot, N., Miclet, L., Prade, H.: The analogical cube of opposition. In: Béziau, J.Y., Buchsbaum, A., Vandoulakis, I. (eds.) Handbook of Abstracts of the 6th World Congress on the Square of Opposition, Crete, Nov 1–5, pp. 9–10 (2018) Barbot, N., Miclet, L., Prade, H.: The analogical cube of opposition. In: Béziau, J.Y., Buchsbaum, A., Vandoulakis, I. (eds.) Handbook of Abstracts of the 6th World Congress on the Square of Opposition, Crete, Nov 1–5, pp. 9–10 (2018)
5.
go back to reference Béziau, J.Y., Buchsbaum, A., Correia, M. (eds.): Handbook of Abstracts of the 5th World Congress on the Square of Opposition, Easter Island, Nov 11–15 (2016) Béziau, J.Y., Buchsbaum, A., Correia, M. (eds.): Handbook of Abstracts of the 5th World Congress on the Square of Opposition, Easter Island, Nov 11–15 (2016)
6.
go back to reference Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): Handbook of Abstracts of the 2nd World Congress on the Square of Opposition, Corte, Corsica, June 17–20 (2010) Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): Handbook of Abstracts of the 2nd World Congress on the Square of Opposition, Corte, Corsica, June 17–20 (2010)
7.
go back to reference Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): Handbook of Abstracts of the 3rd World Congress on the Square of Opposition, Beirut, Lebanon, June 26–30 (2012) Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): Handbook of Abstracts of the 3rd World Congress on the Square of Opposition, Beirut, Lebanon, June 26–30 (2012)
8.
go back to reference Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): Handbook of Abstracts of the 4th World Congress on the Square of Opposition, Roma, Vatican, May 5–9 (2014) Béziau, J.Y., Gan-Krzywoszyńska, K. (eds.): Handbook of Abstracts of the 4th World Congress on the Square of Opposition, Roma, Vatican, May 5–9 (2014)
9.
go back to reference Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–233 (2003)MathSciNetMATH Béziau, J.Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–233 (2003)MathSciNetMATH
11.
go back to reference Béziau, J.-Y.: There is no cube of opposition. In: Beziau, J.-Y., Basti, G. (eds.) The Square of Oppositions: A Cornerstone of Thought, Studies in Universal Logic, pp. 179–193. Birkaüser Verlag, Basel (2017)CrossRef Béziau, J.-Y.: There is no cube of opposition. In: Beziau, J.-Y., Basti, G. (eds.) The Square of Oppositions: A Cornerstone of Thought, Studies in Universal Logic, pp. 179–193. Birkaüser Verlag, Basel (2017)CrossRef
13.
go back to reference Béziau, J.Y., Payette, G. (eds.): The Square of Opposition. A General Framework for Cognition. Peter Lang, Bern (2012) Béziau, J.Y., Payette, G. (eds.): The Square of Opposition. A General Framework for Cognition. Peter Lang, Bern (2012)
14.
15.
go back to reference Blanché, R.: Structures Intellectuelles. Essai sur l’Organisation Systématique des Concepts. Librairie philosophique J. Vrin, Paris (1966) Blanché, R.: Structures Intellectuelles. Essai sur l’Organisation Systématique des Concepts. Librairie philosophique J. Vrin, Paris (1966)
17.
go back to reference Ciucci, D., Dubois, D., Prade, H.: Structures of opposition induced by relations. The Boolean and the gradual cases. Ann. Math. Artif. Intell. 76(3), 351–373 (2016)MathSciNetMATHCrossRef Ciucci, D., Dubois, D., Prade, H.: Structures of opposition induced by relations. The Boolean and the gradual cases. Ann. Math. Artif. Intell. 76(3), 351–373 (2016)MathSciNetMATHCrossRef
18.
go back to reference Coletti, G., Petturiti, D., Vantaggi, B.: Fuzzy weighted attribute combinations based on similarity measures. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) Proceedings of the 4th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’17), Lugano, July 10–14. LNCS 10369, pp. 364–374. Springer, Berlin (2017) Coletti, G., Petturiti, D., Vantaggi, B.: Fuzzy weighted attribute combinations based on similarity measures. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) Proceedings of the 4th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU’17), Lugano, July 10–14. LNCS 10369, pp. 364–374. Springer, Berlin (2017)
19.
go back to reference de Bovelles, Ch.: L’Art des Opposés. Texte et traduction par P. Magnard précédé d’un essai, Soleil Noir, avec 37 reproductions. Librairie Philosophique J. Vrin, Paris (1984) de Bovelles, Ch.: L’Art des Opposés. Texte et traduction par P. Magnard précédé d’un essai, Soleil Noir, avec 37 reproductions. Librairie Philosophique J. Vrin, Paris (1984)
20.
go back to reference Diderot, D., d’Alembert, J. (eds.): Encyclopédie ou Dictionnaire Raisonné des Sciences des Arts et Métiers (1751–1772) Diderot, D., d’Alembert, J. (eds.): Encyclopédie ou Dictionnaire Raisonné des Sciences des Arts et Métiers (1751–1772)
21.
go back to reference Dubois, D., Prade, H., Rico, A.: Fuzzy extensions of conceptual structures of comparison. In: Medina, J., Ojeda-Aciego, M., Verdegay Galdeano, J.L., Pelta, D.A., Cabrera, I.P., Bouchon-Meunier, B., Yager, R.R. (eds.) Proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Cádiz, June 11–15, Part I, Communications in Computer and Information Science, vol. 853, pp. 710–722. Springer, Berlin (2018) Dubois, D., Prade, H., Rico, A.: Fuzzy extensions of conceptual structures of comparison. In: Medina, J., Ojeda-Aciego, M., Verdegay Galdeano, J.L., Pelta, D.A., Cabrera, I.P., Bouchon-Meunier, B., Yager, R.R. (eds.) Proceedings of the 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’18), Cádiz, June 11–15, Part I, Communications in Computer and Information Science, vol. 853, pp. 710–722. Springer, Berlin (2018)
22.
go back to reference Dubois, D., Prade, H., Rico, A.: The cube of opposition: a structure underlying many knowledge representation formalisms. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), Buenos Aires, July 25–31, pp. 2933–2939. AAAI Press (2015) Dubois, D., Prade, H., Rico, A.: The cube of opposition: a structure underlying many knowledge representation formalisms. In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI’15), Buenos Aires, July 25–31, pp. 2933–2939. AAAI Press (2015)
23.
25.
go back to reference Dubois, D., Prade, H.: Possibility Theory—An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)MATH Dubois, D., Prade, H.: Possibility Theory—An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)MATH
26.
go back to reference Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Univers. 6, 149–169 (2012)MathSciNetMATHCrossRef Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Univers. 6, 149–169 (2012)MathSciNetMATHCrossRef
27.
go back to reference Dubois, D., Prade, H.: Gradual structures of oppositions. In: Esteva, F., Magdalena, L., Verdegay, J.L. (eds.) Enric Trillas: Passion for Fuzzy Sets, Studies in Fuzziness and Soft Computing, vol. 322, pp. 79–91. Springer, Berlin (2015)CrossRef Dubois, D., Prade, H.: Gradual structures of oppositions. In: Esteva, F., Magdalena, L., Verdegay, J.L. (eds.) Enric Trillas: Passion for Fuzzy Sets, Studies in Fuzziness and Soft Computing, vol. 322, pp. 79–91. Springer, Berlin (2015)CrossRef
28.
go back to reference Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, pp. 483–581. Kluwer, Boston, MA (2000)MATHCrossRef Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis. In: Dubois, D., Prade, H. (eds.) Fundamentals of Fuzzy Sets. The Handbooks of Fuzzy Sets Series, pp. 483–581. Kluwer, Boston, MA (2000)MATHCrossRef
29.
go back to reference Dubois, D., HadjAli, A., Prade, H.: Fuzziness and uncertainty in temporal reasoning. J. Univers. Comput. Sci. 9, 1168–1194 (2003)MathSciNet Dubois, D., HadjAli, A., Prade, H.: Fuzziness and uncertainty in temporal reasoning. J. Univers. Comput. Sci. 9, 1168–1194 (2003)MathSciNet
30.
go back to reference Dubois, D., Prade, H., Rico, A.: Residuated variants of Sugeno integrals: towards new weighting schemes for qualitative aggregation methods. Inf. Sci. 329, 765–781 (2016)MATHCrossRef Dubois, D., Prade, H., Rico, A.: Residuated variants of Sugeno integrals: towards new weighting schemes for qualitative aggregation methods. Inf. Sci. 329, 765–781 (2016)MATHCrossRef
31.
go back to reference Dubois, D., Prade, H., Rico, A.: Organizing families of aggregation operators into a cube of opposition. In: Kacprzyk, J., Filev, D., Beliakov, G. (eds.) Granular, Soft and Fuzzy Approaches for Intelligent Systems, Dedicated to Professor Ronald R. Yager, Studies in Fuzziness and Soft Computing, vol. 344, pp. 27–45. Springer, Berlin (2017)CrossRef Dubois, D., Prade, H., Rico, A.: Organizing families of aggregation operators into a cube of opposition. In: Kacprzyk, J., Filev, D., Beliakov, G. (eds.) Granular, Soft and Fuzzy Approaches for Intelligent Systems, Dedicated to Professor Ronald R. Yager, Studies in Fuzziness and Soft Computing, vol. 344, pp. 27–45. Springer, Berlin (2017)CrossRef
32.
go back to reference Dubois, D., Prade, H., Rico, A.: Graded cubes of opposition and possibility theory with fuzzy events. Int. J. Approx. Reason. 84, 168–185 (2017)MathSciNetMATHCrossRef Dubois, D., Prade, H., Rico, A.: Graded cubes of opposition and possibility theory with fuzzy events. Int. J. Approx. Reason. 84, 168–185 (2017)MathSciNetMATHCrossRef
33.
go back to reference Dupleix, S.: De l’opposition des énonciations. Book IV, chap. 10, In: La logique ou Art de Discourir et de Raisonner. 1607. Reprinted by Fayard, Paris (1984) Dupleix, S.: De l’opposition des énonciations. Book IV, chap. 10, In: La logique ou Art de Discourir et de Raisonner. 1607. Reprinted by Fayard, Paris (1984)
35.
go back to reference Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)MATHCrossRef Fodor, J.C., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht (1994)MATHCrossRef
37.
go back to reference Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholast. XXIV(1), 32–56 (1950)CrossRef Jacoby, P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholast. XXIV(1), 32–56 (1950)CrossRef
38.
go back to reference Johnson, W.E.: Logic. Part I, p. 142. Cambridge University Press, Cambridge (1921). (chap. IX) Johnson, W.E.: Logic. Part I, p. 142. Cambridge University Press, Cambridge (1921). (chap. IX)
39.
go back to reference Keynes, J.N.: Studies and Exercises in Formal Logic, Part II, 3rd edn, p. 144. MacMillan, New York (1894). (chap. IV) Keynes, J.N.: Studies and Exercises in Formal Logic, Part II, 3rd edn, p. 144. MacMillan, New York (1894). (chap. IV)
40.
41.
42.
go back to reference Moretti, A.: The geometry of opposition. Ph.D. thesis. University of Neuchâtel (2009) Moretti, A.: The geometry of opposition. Ph.D. thesis. University of Neuchâtel (2009)
43.
go back to reference Moretti, A.: Geometry for modalities? Yes: Through N-opposition theory? In: Béziau, J.-Y., Costa Leite, A., Facchini, A. (eds.) Aspects of Universal Logic, pp. 102–145. University of Neuchâtel, Neuchâtel (2004) Moretti, A.: Geometry for modalities? Yes: Through N-opposition theory? In: Béziau, J.-Y., Costa Leite, A., Facchini, A. (eds.) Aspects of Universal Logic, pp. 102–145. University of Neuchâtel, Neuchâtel (2004)
45.
go back to reference Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2008) Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Stanford (2008)
47.
go back to reference Pellissier, R.: 2-opposition and the topological hexagon. In: Béziau, J.-Y., Payette, G. (eds.) New Perspectives on the Square of Opposition. Peter Lang, Bern (2012) Pellissier, R.: 2-opposition and the topological hexagon. In: Béziau, J.-Y., Payette, G. (eds.) New Perspectives on the Square of Opposition. Peter Lang, Bern (2012)
49.
50.
go back to reference Roubens, M., Vincke, Ph.: Preference Modeling. LNEMS 250. Springer, Berlin (1985) Roubens, M., Vincke, Ph.: Preference Modeling. LNEMS 250. Springer, Berlin (1985)
52.
go back to reference Sauriol, P.: Remarques sur le théorie de l’hexagone logique de Blanché. Can. Philos. Rev. 7(3), 374–390 (1968) Sauriol, P.: Remarques sur le théorie de l’hexagone logique de Blanché. Can. Philos. Rev. 7(3), 374–390 (1968)
53.
go back to reference Sesmat, A.: Logique II: Les Raisonnements, la Logistique. Hermann, Paris (1951) Sesmat, A.: Logique II: Les Raisonnements, la Logistique. Hermann, Paris (1951)
54.
55.
go back to reference W. of Sherwood, William of Sherwood’s Introduction to Logic. University of Minnesota Press, Minneapolis, with translation, introduction and notes by N. Kretzmann (1966) W. of Sherwood, William of Sherwood’s Introduction to Logic. University of Minnesota Press, Minneapolis, with translation, introduction and notes by N. Kretzmann (1966)
Metadata
Title
Structures of Opposition and Comparisons: Boolean and Gradual Cases
Authors
Didier Dubois
Henri Prade
Agnès Rico
Publication date
28-02-2020
Publisher
Springer International Publishing
Published in
Logica Universalis / Issue 1/2020
Print ISSN: 1661-8297
Electronic ISSN: 1661-8300
DOI
https://doi.org/10.1007/s11787-020-00241-6

Other articles of this Issue 1/2020

Logica Universalis 1/2020 Go to the issue

OriginalPaper

The Cretan Square

Premium Partner