Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 4/2023

02-05-2023 | ORIGINAL ARTICLE

Study of the pyrolysis of ionic liquid [Bmim]Cl-pretreated mango pit at low temperature

Authors: Guolan Dou, Liying Zhang

Published in: Journal of Material Cycles and Waste Management | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present work, mango pit was used to study the feasibility of converting ionic liquid-pretreated biomass into biofuel and activated biochar by using pyrolysis temperature as a key variable. Ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) was used as a green solvent to dissolve mango pit. The impact of [Bmim]Cl on the pyrolysis properties at peak DTG temperature was investigated. Pretreatment with [Bmim]Cl was observed to slightly enhance biochar yield, while somewhat decreasing bio-oil and biogas yields. The yield of hydrogen and methane, as well as the generation of phenolic and alcoholic bio-oils, are increased by [Bmim]Cl pretreatment. [Bmim]Cl pretreatment was determined to promote the formation of pore structure, a greater number of pores were opened, and the BET surface areas increased 24 times. The pyrolysis kinetics were calculated using the DAEM model. The results showed that [Bmim]Cl pretreatment resulted in lower activation energy and a high amount of fraction mass conversion at low temperatures. As a result, the results showed that pyrolysis of [Bmim]Cl-pretreated biomass did not require high temperatures, and that it is possible to convert ionic liquid pretreatment biomass into high-quality biofuel and active biochar by controlling the pyrolysis temperature.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wildschut J, Smit AT, Reith JH, Huijgen WJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66CrossRef Wildschut J, Smit AT, Reith JH, Huijgen WJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66CrossRef
2.
go back to reference Paul SK, Chakraborty S (2018) Microwave-assisted ionic liquid-mediated rapid catalytic conversion of non-edible lignocellulosic Sunn hemp fibres to biofuels. Bioresour Technol 253:85–93CrossRef Paul SK, Chakraborty S (2018) Microwave-assisted ionic liquid-mediated rapid catalytic conversion of non-edible lignocellulosic Sunn hemp fibres to biofuels. Bioresour Technol 253:85–93CrossRef
3.
go back to reference Sun X, Atiyeh HK, Li M, Chen Y (2020) Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: a review. Bioresour Technol 295:122252–122264CrossRef Sun X, Atiyeh HK, Li M, Chen Y (2020) Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: a review. Bioresour Technol 295:122252–122264CrossRef
4.
go back to reference Yang X, Kang K, Qiu L, Zhao L, Sun R (2020) Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew Energ 146:1691–1699CrossRef Yang X, Kang K, Qiu L, Zhao L, Sun R (2020) Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew Energ 146:1691–1699CrossRef
5.
go back to reference Ashokkumar V, Chen W-H, AaH A-M, Kumar G, Sathishkumar P, Pandian S, Ani FN, Ngamcharussrivichai C (2019) Bioenergy production and metallic iron (Fe) conversion from Botryococcus sp. cultivated in domestic wastewater: Algal biorefinery concept. Energ Convers Manage 196:1326–1334CrossRef Ashokkumar V, Chen W-H, AaH A-M, Kumar G, Sathishkumar P, Pandian S, Ani FN, Ngamcharussrivichai C (2019) Bioenergy production and metallic iron (Fe) conversion from Botryococcus sp. cultivated in domestic wastewater: Algal biorefinery concept. Energ Convers Manage 196:1326–1334CrossRef
6.
go back to reference Ansari KB, Gaikar VG (2019) Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron. Renew Energ 130:305–318CrossRef Ansari KB, Gaikar VG (2019) Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron. Renew Energ 130:305–318CrossRef
7.
go back to reference Barbanera M, Pelosi C, Taddei AR, Cotana F (2018) Optimization of bio-oil production from solid digestate by microwave-assisted liquefaction. Energ Convers Manage 171:1263–1272CrossRef Barbanera M, Pelosi C, Taddei AR, Cotana F (2018) Optimization of bio-oil production from solid digestate by microwave-assisted liquefaction. Energ Convers Manage 171:1263–1272CrossRef
8.
go back to reference Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energ 142:624–642CrossRef Barskov S, Zappi M, Buchireddy P, Dufreche S, Guillory J, Gang D, Hernandez R, Bajpai R, Baudier J, Cooper R, Sharp R (2019) Torrefaction of biomass: a review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renew Energ 142:624–642CrossRef
9.
go back to reference Badawi MA (2019) Production of biochar from date palm fronds and its effects on soil properties. Mater Res Proceed 11:159–168CrossRef Badawi MA (2019) Production of biochar from date palm fronds and its effects on soil properties. Mater Res Proceed 11:159–168CrossRef
10.
go back to reference Alsewaileh AS, Usman AR, Al-Wabel MI (2019) Effects of pyrolysis temperature on nitrate-nitrogen (NO3(-)-N) and bromate (Br O3(-)) adsorption onto date palm biochar. J Environ Manage 237:289–296CrossRef Alsewaileh AS, Usman AR, Al-Wabel MI (2019) Effects of pyrolysis temperature on nitrate-nitrogen (NO3(-)-N) and bromate (Br O3(-)) adsorption onto date palm biochar. J Environ Manage 237:289–296CrossRef
11.
go back to reference Aceña-Heras S, Novak J, Cayuela ML, Peñalosa JM, Moreno-Jiménez E (2019) Influence of pyrolyzed grape-seeds/sewage sludge blends on the Availability of P Fe, Cu, As and Cd to Maize. Agronomy 9:406–423CrossRef Aceña-Heras S, Novak J, Cayuela ML, Peñalosa JM, Moreno-Jiménez E (2019) Influence of pyrolyzed grape-seeds/sewage sludge blends on the Availability of P Fe, Cu, As and Cd to Maize. Agronomy 9:406–423CrossRef
12.
go back to reference Adeniyi AG, Ighalo JO, Onifade DV (2019) Production of bio-char from plantain (musa Paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust Sci Technol 193:60–74CrossRef Adeniyi AG, Ighalo JO, Onifade DV (2019) Production of bio-char from plantain (musa Paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust Sci Technol 193:60–74CrossRef
13.
go back to reference Awasthi A, Singh G, Dhyani V, Kumar J, Reddy YS, Adarsh VP, Puthiyamadam A, Mullepureddy KK, Sukumaran RK, Ummalyma SB, Sahoo D, Bhaskar T (2019) Co-pyrolysis of phumdi and para grass biomass from Loktak Lake. Bioresour Technol 285:121308–121313CrossRef Awasthi A, Singh G, Dhyani V, Kumar J, Reddy YS, Adarsh VP, Puthiyamadam A, Mullepureddy KK, Sukumaran RK, Ummalyma SB, Sahoo D, Bhaskar T (2019) Co-pyrolysis of phumdi and para grass biomass from Loktak Lake. Bioresour Technol 285:121308–121313CrossRef
14.
go back to reference Agar DA, Kwapinska M, Leahy JJ (2018) Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution. Environ Sci Pollut Res Int 25:35874–35882CrossRef Agar DA, Kwapinska M, Leahy JJ (2018) Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution. Environ Sci Pollut Res Int 25:35874–35882CrossRef
15.
go back to reference Bach Q-V, Chen W-H, Eng CF, Wang C-W, Liang K-C, Kuo J-Y (2019) Pyrolysis characteristics and non-isothermal torrefaction kinetics of industrial solid wastes. Fuel 251:118–125CrossRef Bach Q-V, Chen W-H, Eng CF, Wang C-W, Liang K-C, Kuo J-Y (2019) Pyrolysis characteristics and non-isothermal torrefaction kinetics of industrial solid wastes. Fuel 251:118–125CrossRef
16.
go back to reference Cheng Y-S, Mutrakulcharoen P, Chuetor S, Cheenkachorn K, Tantayotai P, Panakkal EJ, Sriariyanun M (2020) Recent situation and Progress in biorefining process of lignocellulosic biomass: toward green economy. Appl Sci Eng Prog 13:299–311CrossRef Cheng Y-S, Mutrakulcharoen P, Chuetor S, Cheenkachorn K, Tantayotai P, Panakkal EJ, Sriariyanun M (2020) Recent situation and Progress in biorefining process of lignocellulosic biomass: toward green economy. Appl Sci Eng Prog 13:299–311CrossRef
17.
go back to reference Sriariyanun M, Heitz JH, Yasurin P, Asavasanti S, Tantayota P (2019) Itaconic acid: a promising and sustainable platform chemical? Appl Sci Eng Prog 12:75–82 Sriariyanun M, Heitz JH, Yasurin P, Asavasanti S, Tantayota P (2019) Itaconic acid: a promising and sustainable platform chemical? Appl Sci Eng Prog 12:75–82
18.
go back to reference Song L, Li Z, Zhang D, Liu D, Wu P, Li Q (2017) Investigations on co-refining of biomass with vacuum gas oil in the presence of hydro-donor. Energ Convers Manage 148:1225–1232CrossRef Song L, Li Z, Zhang D, Liu D, Wu P, Li Q (2017) Investigations on co-refining of biomass with vacuum gas oil in the presence of hydro-donor. Energ Convers Manage 148:1225–1232CrossRef
19.
go back to reference Sorn V, Chang KL, Phitsuwan P, Ratanakhanokchai K, Dong CD (2019) Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour Technol 293:121929–121936CrossRef Sorn V, Chang KL, Phitsuwan P, Ratanakhanokchai K, Dong CD (2019) Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. Bioresour Technol 293:121929–121936CrossRef
20.
go back to reference Lin J, Sun S, Ma R, Fang L, Zhang P, Qu J, Zhang X, Geng H, Huang X (2018) Characteristics and reaction mechanisms of sludge-derived bio-oil produced through microwave pyrolysis at different temperatures. Energ Convers Manage 160:403–410CrossRef Lin J, Sun S, Ma R, Fang L, Zhang P, Qu J, Zhang X, Geng H, Huang X (2018) Characteristics and reaction mechanisms of sludge-derived bio-oil produced through microwave pyrolysis at different temperatures. Energ Convers Manage 160:403–410CrossRef
21.
go back to reference Reshad AS, Tiwari P, Goud VV (2019) Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production. J Anal Appl Pyrol 139:333–343CrossRef Reshad AS, Tiwari P, Goud VV (2019) Thermal and co-pyrolysis of rubber seed cake with waste polystyrene for bio-oil production. J Anal Appl Pyrol 139:333–343CrossRef
22.
go back to reference Dyer AC, Nahil MA, Williams PT (2022) Biomass:polystyrene co-pyrolysis coupled with metal-modified zeolite catalysis for liquid fuel and chemical production. J Mater Cycles Waste Manage 24:477–490CrossRef Dyer AC, Nahil MA, Williams PT (2022) Biomass:polystyrene co-pyrolysis coupled with metal-modified zeolite catalysis for liquid fuel and chemical production. J Mater Cycles Waste Manage 24:477–490CrossRef
23.
go back to reference Lan Z, Chen C, Rezaei Rashti M, Yang H, Zhang D (2018) High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil. GCB Bioenergy 10:930–945CrossRef Lan Z, Chen C, Rezaei Rashti M, Yang H, Zhang D (2018) High pyrolysis temperature biochars reduce nitrogen availability and nitrous oxide emissions from an acid soil. GCB Bioenergy 10:930–945CrossRef
24.
go back to reference Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490CrossRef Yuan P, Wang J, Pan Y, Shen B, Wu C (2019) Review of biochar for the management of contaminated soil: preparation, application and prospect. Sci Total Environ 659:473–490CrossRef
25.
go back to reference Dieguez-Alonso A, Anca-Couce A, Fristak V, Moreno-Jimenez E, Bacher M, Bucheli TD, Cimo G, Conte P, Hagemann N, Haller A, Hilber I, Husson O, Kammann CI, Kienzl N, Leifeld J, Rosenau T, Soja G, Schmidt HP (2019) Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere 214:743–753CrossRef Dieguez-Alonso A, Anca-Couce A, Fristak V, Moreno-Jimenez E, Bacher M, Bucheli TD, Cimo G, Conte P, Hagemann N, Haller A, Hilber I, Husson O, Kammann CI, Kienzl N, Leifeld J, Rosenau T, Soja G, Schmidt HP (2019) Designing biochar properties through the blending of biomass feedstock with metals: Impact on oxyanions adsorption behavior. Chemosphere 214:743–753CrossRef
26.
go back to reference Lebrun M, Miard F, Renouard S, Nandillon R, Scippa GS, Morabito D, Bourgerie S (2018) Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests. Environ Sci Pollut Res Int 25:33678–33690CrossRef Lebrun M, Miard F, Renouard S, Nandillon R, Scippa GS, Morabito D, Bourgerie S (2018) Effect of Fe-functionalized biochar on toxicity of a technosol contaminated by Pb and As: sorption and phytotoxicity tests. Environ Sci Pollut Res Int 25:33678–33690CrossRef
27.
go back to reference Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15CrossRef Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15CrossRef
28.
go back to reference Zhang T, Walawender W, Fan L, Fan M, Daugaard D, Brown R (2004) Preparation of activated carbon from forest and agricultural residues through CO activation. Chem Eng J 105:53–59CrossRef Zhang T, Walawender W, Fan L, Fan M, Daugaard D, Brown R (2004) Preparation of activated carbon from forest and agricultural residues through CO activation. Chem Eng J 105:53–59CrossRef
29.
go back to reference Dou G, Jiang Z (2019) Preparation of sodium humate-modified biochar absorbents for water treatment. ACS Omega 4:16536–16542CrossRef Dou G, Jiang Z (2019) Preparation of sodium humate-modified biochar absorbents for water treatment. ACS Omega 4:16536–16542CrossRef
30.
go back to reference Thomas W (1999) Room-temperature ionic liquids solvents for synthesis and catalysis,. Chem Rev 99:2071–2083CrossRef Thomas W (1999) Room-temperature ionic liquids solvents for synthesis and catalysis,. Chem Rev 99:2071–2083CrossRef
31.
go back to reference Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRef Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRef
32.
go back to reference Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267CrossRef Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267CrossRef
33.
go back to reference Padrino B, Lara-Serrano M, Morales-delarosa S, Campos-Martin JM, Fierro JLG, Martinez F, Melero JA, Puyol D (2018) Resource recovery potential from lignocellulosic feedstock upon lysis with ionic liquids. Front Bioeng Biotechnol 6:119–131CrossRef Padrino B, Lara-Serrano M, Morales-delarosa S, Campos-Martin JM, Fierro JLG, Martinez F, Melero JA, Puyol D (2018) Resource recovery potential from lignocellulosic feedstock upon lysis with ionic liquids. Front Bioeng Biotechnol 6:119–131CrossRef
34.
go back to reference Moniruzzaman M, Ono T (2013) Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresour Technol 127:132–137CrossRef Moniruzzaman M, Ono T (2013) Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresour Technol 127:132–137CrossRef
35.
go back to reference Singh JK, Sharma RK, Ghosh P, Kumar A, Khan ML (2018) Imidazolium based ionic liquids: a promising green solvent for water hyacinth biomass deconstruction. Front Chem 6:548CrossRef Singh JK, Sharma RK, Ghosh P, Kumar A, Khan ML (2018) Imidazolium based ionic liquids: a promising green solvent for water hyacinth biomass deconstruction. Front Chem 6:548CrossRef
36.
go back to reference Zhen L, Hang X, Airong X (2014) Selective dissolution for the components of lignocellulose with ionic liquids. J Chem Pharm Res 6:874–879 Zhen L, Hang X, Airong X (2014) Selective dissolution for the components of lignocellulose with ionic liquids. J Chem Pharm Res 6:874–879
37.
go back to reference Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRef Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69CrossRef
38.
go back to reference P. SR, K. SS, D. HJ, D. RR (2002) Dissolution of Cellose with Ionic Liquids, J Am Chem Soc 124: 4974-4975 P. SR, K. SS, D. HJ, D. RR (2002) Dissolution of Cellose with Ionic Liquids, J Am Chem Soc 124: 4974-4975
39.
go back to reference Ansari M, Zafar U, Ejaz U, Sohail M, Pirzada A, Aman A (2021) Comparison of composting of chemically pretreated and fermented sugarcane bagasse for zero-waste biorefinery. J Mater Cycles Waste Manage 23:911–921CrossRef Ansari M, Zafar U, Ejaz U, Sohail M, Pirzada A, Aman A (2021) Comparison of composting of chemically pretreated and fermented sugarcane bagasse for zero-waste biorefinery. J Mater Cycles Waste Manage 23:911–921CrossRef
40.
go back to reference Mahmood H, Moniruzzaman M, Iqbal T, Yusup S, Rashid M, Raza A (2019) Comparative effect of ionic liquids pretreatment on thermogravimetric kinetics of crude oil palm biomass for possible sustainable exploitation. J Mol Liq 282:88–96CrossRef Mahmood H, Moniruzzaman M, Iqbal T, Yusup S, Rashid M, Raza A (2019) Comparative effect of ionic liquids pretreatment on thermogravimetric kinetics of crude oil palm biomass for possible sustainable exploitation. J Mol Liq 282:88–96CrossRef
41.
go back to reference Muhammad N, Omar WN, Man Z, Bustam MA, Rafiq S, Uemura Y (2012) Effect of ionic liquid treatment on pyrolysis products from bamboo. Ind Eng Chem Res 51:2280–2289CrossRef Muhammad N, Omar WN, Man Z, Bustam MA, Rafiq S, Uemura Y (2012) Effect of ionic liquid treatment on pyrolysis products from bamboo. Ind Eng Chem Res 51:2280–2289CrossRef
42.
go back to reference Muhammad N, Man Z, Bustam Khalil MA (2011) Ionic liquid—a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70:125–133CrossRef Muhammad N, Man Z, Bustam Khalil MA (2011) Ionic liquid—a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70:125–133CrossRef
43.
go back to reference Dastyar W, Raheem A, Zhao M, Yuan W, Li H, Ting ZJ (2019) Effects of ionic liquid-assisted pretreatment of heavy metal-contaminated biomass on the yield and composition of syngas production using noncatalytic and catalytic pyrolysis and gasification processes. ACS Sustainable Chem Eng 7:18303–18312CrossRef Dastyar W, Raheem A, Zhao M, Yuan W, Li H, Ting ZJ (2019) Effects of ionic liquid-assisted pretreatment of heavy metal-contaminated biomass on the yield and composition of syngas production using noncatalytic and catalytic pyrolysis and gasification processes. ACS Sustainable Chem Eng 7:18303–18312CrossRef
44.
go back to reference Arslanoğlu E, Eren MŞA, Arslanoğlu H, Çiftçi H (2021) Fabrication, characterization, and adsorption applications of low-cost hybride activated carbons from peanut shell-vinasse mixtures by one-step pyrolysis. Biomass Convers Bior 13:2321–2335CrossRef Arslanoğlu E, Eren MŞA, Arslanoğlu H, Çiftçi H (2021) Fabrication, characterization, and adsorption applications of low-cost hybride activated carbons from peanut shell-vinasse mixtures by one-step pyrolysis. Biomass Convers Bior 13:2321–2335CrossRef
45.
go back to reference Chukwuneke JL, Ewulonu MC, Chukwujike IC, Okolie PC (2019) Physico-chemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood. Heliyon 5:1790–1796CrossRef Chukwuneke JL, Ewulonu MC, Chukwujike IC, Okolie PC (2019) Physico-chemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood. Heliyon 5:1790–1796CrossRef
46.
go back to reference Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418CrossRef Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418CrossRef
47.
go back to reference Yu C, Luo Z, Fang M, Liao Y, Wang S, Cen K (2002) An improved kinetic model for cellulose pyrolysis. J Zhejiang Univ (Eng Sci) 36:509–515 Yu C, Luo Z, Fang M, Liao Y, Wang S, Cen K (2002) An improved kinetic model for cellulose pyrolysis. J Zhejiang Univ (Eng Sci) 36:509–515
48.
go back to reference Tao W, Zhang P, Yang X, Li H, Liu Y, Pan B (2021) An integrated study on the pyrolysis mecanism of peanut shell based on the kinetic analysis and solid/gas characterization. Bioresour Technol 329:124860–124868CrossRef Tao W, Zhang P, Yang X, Li H, Liu Y, Pan B (2021) An integrated study on the pyrolysis mecanism of peanut shell based on the kinetic analysis and solid/gas characterization. Bioresour Technol 329:124860–124868CrossRef
49.
go back to reference Dou G, Goldfarb JL (2017) In situ upgrading of pyrolysis biofuels by bentonite clay with simultaneous production of heterogeneous adsorbents for water treatment. Fuel 195:273–283CrossRef Dou G, Goldfarb JL (2017) In situ upgrading of pyrolysis biofuels by bentonite clay with simultaneous production of heterogeneous adsorbents for water treatment. Fuel 195:273–283CrossRef
Metadata
Title
Study of the pyrolysis of ionic liquid [Bmim]Cl-pretreated mango pit at low temperature
Authors
Guolan Dou
Liying Zhang
Publication date
02-05-2023
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 4/2023
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-023-01684-x

Other articles of this Issue 4/2023

Journal of Material Cycles and Waste Management 4/2023 Go to the issue