Skip to main content
Top
Published in: Journal of Material Cycles and Waste Management 2/2023

25-01-2023 | ORIGINAL ARTICLE

Study to improve the reactivity of magnesium cations to CO2 for carbon capture and utilization technology using edible salt manufacturing plant wastewater

Authors: Injun Kim, Jinwon Park, Yunsung Yoo

Published in: Journal of Material Cycles and Waste Management | Issue 2/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This study aims to improve the formation of MgCO3 via inorganic carbon capture utilization (CCU) technology using industrial wastewater from an edible salt manufacturing plant. Wastewater contains concentrated Mg2+, which can be used in various industries. Despite its possible applications and advantages, Mg2+ is not typically used in inorganic CCU technology because its chemical properties make it difficult to convert it into metal carbonate. The formation of magnesium carbonate from wastewater is a challenge because the mechanism of magnesium carbonate formation is not well understood, especially the influence of the other cation components. To determine the influence of the other cation components, we designed eight simulated wastewater samples consisting of different cation components and concentrations: Mg2+, Mg2+ with Ca2+, Mg2+ with Na+, Mg2+with Ca2+, and Na+. By comparing their results, we demonstrated the influence of other cations on magnesium carbonate formation. These results indicate that Ca2+ should be removed from the reactant to form magnesium carbonate. Furthermore, we found that Na+ promoted the formation of magnesium carbonate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630CrossRef Azdarpour A, Asadullah M, Mohammadian E, Hamidi H, Junin R, Karaei MA (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630CrossRef
2.
go back to reference Zevenhoven R, Eloneva S, Teir S (2006) Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catal Today 115(1–4):73–79CrossRef Zevenhoven R, Eloneva S, Teir S (2006) Chemical fixation of CO2 in carbonates: routes to valuable products and long-term storage. Catal Today 115(1–4):73–79CrossRef
3.
go back to reference Kang D, Lee M-G, Jo H, Yoo Y, Lee S-Y, Park J (2017) Carbon capture and utilization using industrial wastewater under ambient conditions. Chem Eng J 308:1073–1080CrossRef Kang D, Lee M-G, Jo H, Yoo Y, Lee S-Y, Park J (2017) Carbon capture and utilization using industrial wastewater under ambient conditions. Chem Eng J 308:1073–1080CrossRef
4.
go back to reference Kang D, Yoo Y, Park J, Lee MG (2018) Chemical conversion of carbon dioxide via target metal separation using seawater-derived wastewater. ChemistrySelect 3(30):8628–8636CrossRef Kang D, Yoo Y, Park J, Lee MG (2018) Chemical conversion of carbon dioxide via target metal separation using seawater-derived wastewater. ChemistrySelect 3(30):8628–8636CrossRef
5.
go back to reference Yoo Y, Kang D, Kim I, Park J (2018) Characteristics of metal cation carbonation and carbon dioxide utilization using seawater-based industrial wastewater. ChemistrySelect 3(32):9284–9292CrossRef Yoo Y, Kang D, Kim I, Park J (2018) Characteristics of metal cation carbonation and carbon dioxide utilization using seawater-based industrial wastewater. ChemistrySelect 3(32):9284–9292CrossRef
6.
go back to reference Kang D, Jo H, Lee M-G, Park J (2016) Carbon dioxide utilization using a pretreated brine solution at normal temperature and pressure. Chem Eng J 284:1270–1278CrossRef Kang D, Jo H, Lee M-G, Park J (2016) Carbon dioxide utilization using a pretreated brine solution at normal temperature and pressure. Chem Eng J 284:1270–1278CrossRef
7.
go back to reference Liu Q, Liu W, Hu J, Wang L, Gao J, Liang B et al (2018) Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J Clean Prod 197:242–252CrossRef Liu Q, Liu W, Hu J, Wang L, Gao J, Liang B et al (2018) Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J Clean Prod 197:242–252CrossRef
8.
go back to reference Arti M, Youn MH, Park KT, Kim HJ, Kim YE, Jeong SK (2016) Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 31(1):763–769CrossRef Arti M, Youn MH, Park KT, Kim HJ, Kim YE, Jeong SK (2016) Single process for CO2 capture and mineralization in various alkanolamines using calcium chloride. Energy Fuels 31(1):763–769CrossRef
9.
go back to reference Kim I, Yoo Y, Son J, Park J, Huh I-S, Kang D (2019) Two-step mineral carbonation using seawater-based industrial wastewater: an eco-friendly carbon capture, utilization, and storage process. J Mater Cycles Waste Manage 22(2):333–347CrossRef Kim I, Yoo Y, Son J, Park J, Huh I-S, Kang D (2019) Two-step mineral carbonation using seawater-based industrial wastewater: an eco-friendly carbon capture, utilization, and storage process. J Mater Cycles Waste Manage 22(2):333–347CrossRef
10.
go back to reference Jang K, Choi WY, Lee D, Park J, Yoo Y (2022) Purification of landfill gas by extracted calcium ions from municipal solid waste incineration fly ash. Sci Total Environ 807(Pt 2):150729CrossRef Jang K, Choi WY, Lee D, Park J, Yoo Y (2022) Purification of landfill gas by extracted calcium ions from municipal solid waste incineration fly ash. Sci Total Environ 807(Pt 2):150729CrossRef
11.
go back to reference Park S, Song K, Jeon CW (2016) A study of mineral recovery from waste ashes at an incineration facility using the mineral carbonation method. Int J Miner Process 155:1–5CrossRef Park S, Song K, Jeon CW (2016) A study of mineral recovery from waste ashes at an incineration facility using the mineral carbonation method. Int J Miner Process 155:1–5CrossRef
12.
go back to reference Choi WY, Aravena C, Park J, Kang D, Yoo Y (2021) Performance prediction and evaluation of CO2 utilization with conjoined electrolysis and carbonation using desalinated rejected seawater brine. Desalination 509:115068 Choi WY, Aravena C, Park J, Kang D, Yoo Y (2021) Performance prediction and evaluation of CO2 utilization with conjoined electrolysis and carbonation using desalinated rejected seawater brine. Desalination 509:115068
13.
go back to reference Yoo Y, Kang D, Choi E, Park J, Huh I-S (2019) Morphology control of magnesium carbonate for CO2 utilization using Mg2+ ions in industrial wastewater depending on length of alkyl chain of primary alkanolamine, reaction temperature, CO2 concentration, and Mg2+/Na+ ratio. Chem Eng J 370:237–250CrossRef Yoo Y, Kang D, Choi E, Park J, Huh I-S (2019) Morphology control of magnesium carbonate for CO2 utilization using Mg2+ ions in industrial wastewater depending on length of alkyl chain of primary alkanolamine, reaction temperature, CO2 concentration, and Mg2+/Na+ ratio. Chem Eng J 370:237–250CrossRef
14.
go back to reference Park S (2018) CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism. Energy 153:413–421CrossRef Park S (2018) CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism. Energy 153:413–421CrossRef
15.
go back to reference Lv B, Guo B, Zhou Z, Jing G (2015) Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ Sci Technol 49(17):10728–10735CrossRef Lv B, Guo B, Zhou Z, Jing G (2015) Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ Sci Technol 49(17):10728–10735CrossRef
16.
go back to reference Kang D, Yoo Y, Park J (2020) Accelerated chemical conversion of metal cations dissolved in seawater-based reject brine solution for desalination and CO2 utilization. Desalination 473:114147 Kang D, Yoo Y, Park J (2020) Accelerated chemical conversion of metal cations dissolved in seawater-based reject brine solution for desalination and CO2 utilization. Desalination 473:114147
17.
go back to reference Yoo Y, Kang D, Park J (2021) Advanced pseudopolymorph control of magnesium carbonates using structural properties of amines for CO2 utilization based on post-treatment of desalinated brine. Desalination 505:114904 Yoo Y, Kang D, Park J (2021) Advanced pseudopolymorph control of magnesium carbonates using structural properties of amines for CO2 utilization based on post-treatment of desalinated brine. Desalination 505:114904
18.
go back to reference Yoo Y, Kang D, Park S, Park J (2020) Carbon utilization based on post-treatment of desalinated reject brine and effect of structural properties of amines for CaCO3 polymorphs control. Desalination 479:114325 Yoo Y, Kang D, Park S, Park J (2020) Carbon utilization based on post-treatment of desalinated reject brine and effect of structural properties of amines for CaCO3 polymorphs control. Desalination 479:114325
19.
go back to reference Rajeswara Rao VSC (1995) Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 18:359–369CrossRef Rajeswara Rao VSC (1995) Kinetics of thermal decomposition of hydromagnesite. Chem Eng Technol 18:359–369CrossRef
20.
go back to reference E.García Calvo MAA, P. Letón (1990) Effects of impurities in the kinetics of calcite decomposition. Thermochimica Acta 170:7-11 E.García Calvo MAA, P. Letón (1990) Effects of impurities in the kinetics of calcite decomposition. Thermochimica Acta 170:7-11
21.
go back to reference Monasterio-Guillot L, Fernandez-Martinez A, Ruiz-Agudo E, Rodriguez-Navarro C (2021) Carbonation of calcium-magnesium pyroxenes: Physical-chemical controls and effects of reaction-driven fracturing. Geochim Cosmochim Acta 304:258–280CrossRef Monasterio-Guillot L, Fernandez-Martinez A, Ruiz-Agudo E, Rodriguez-Navarro C (2021) Carbonation of calcium-magnesium pyroxenes: Physical-chemical controls and effects of reaction-driven fracturing. Geochim Cosmochim Acta 304:258–280CrossRef
22.
go back to reference Kim I, Park J, Yoo Y (2022) Formation and polymorph transformation trends of metal carbonate in inorganic CO2 conversion process using simulated brine: study for post-treatment of industrial brine via CO2 conversion. Process Saf Environ Prot 162:313–327CrossRef Kim I, Park J, Yoo Y (2022) Formation and polymorph transformation trends of metal carbonate in inorganic CO2 conversion process using simulated brine: study for post-treatment of industrial brine via CO2 conversion. Process Saf Environ Prot 162:313–327CrossRef
23.
go back to reference Kimura T, Koga N (2011) Monohydrocalcite in comparison with hydrated amorphous calcium carbonate: precipitation condition and thermal behavior. Cryst Growth Des 11(9):3877–3884CrossRef Kimura T, Koga N (2011) Monohydrocalcite in comparison with hydrated amorphous calcium carbonate: precipitation condition and thermal behavior. Cryst Growth Des 11(9):3877–3884CrossRef
24.
go back to reference Nishiyama R, Munemoto T, Fukushi K (2013) Formation condition of monohydrocalcite from CaCl2–MgCl2–Na2CO3 solutions. Geochim Cosmochim Acta 100:217–231CrossRef Nishiyama R, Munemoto T, Fukushi K (2013) Formation condition of monohydrocalcite from CaCl2–MgCl2–Na2CO3 solutions. Geochim Cosmochim Acta 100:217–231CrossRef
25.
go back to reference Rodriguez-Blanco JD, Shaw S, Bots P, Roncal-Herrero T, Benning LG (2014) The role of Mg in the crystallization of monohydrocalcite. Geochim Cosmochim Acta 127:204–220CrossRef Rodriguez-Blanco JD, Shaw S, Bots P, Roncal-Herrero T, Benning LG (2014) The role of Mg in the crystallization of monohydrocalcite. Geochim Cosmochim Acta 127:204–220CrossRef
26.
go back to reference Zhang G, Delgado-López JM, Choquesillo-Lazarte D, García-Ruiz JM (2015) Growth behavior of monohydrocalcite (CaCO3·H2O) in silica-rich alkaline solution. Cryst Growth Des 15(2):564–572CrossRef Zhang G, Delgado-López JM, Choquesillo-Lazarte D, García-Ruiz JM (2015) Growth behavior of monohydrocalcite (CaCO3·H2O) in silica-rich alkaline solution. Cryst Growth Des 15(2):564–572CrossRef
27.
go back to reference Montes-Hernandez G, Renard F, Auzende A-L, Findling N (2020) Amorphous calcium-magnesium carbonate (ACMC) accelerates dolomitization at room temperature under abiotic conditions. Cryst Growth Des 20(3):1434–1441CrossRef Montes-Hernandez G, Renard F, Auzende A-L, Findling N (2020) Amorphous calcium-magnesium carbonate (ACMC) accelerates dolomitization at room temperature under abiotic conditions. Cryst Growth Des 20(3):1434–1441CrossRef
28.
go back to reference Mingyang Chen VEJ, Felmy AR, Dixon DA (2015) Structures and energetics of (MgCO3)n Clusters (n<=16). J Phys Chem A 119(14):3419–3428CrossRef Mingyang Chen VEJ, Felmy AR, Dixon DA (2015) Structures and energetics of (MgCO3)n Clusters (n<=16). J Phys Chem A 119(14):3419–3428CrossRef
29.
go back to reference Jensen ACS, Imberti S, Habraken WJEM, Bertinetti L (2020) Small Ionic radius limits magnesium water interaction in amorphous calcium/magnesium carbonates. J Phy Chem C 124(11):6141–6144CrossRef Jensen ACS, Imberti S, Habraken WJEM, Bertinetti L (2020) Small Ionic radius limits magnesium water interaction in amorphous calcium/magnesium carbonates. J Phy Chem C 124(11):6141–6144CrossRef
30.
go back to reference Jy T, Kawano J, Nagai T, Teng H (2019) Transformation process of amorphous magnesium carbonate in aqueous solution. J Mineral Petrol Sci 114(2):105–109CrossRef Jy T, Kawano J, Nagai T, Teng H (2019) Transformation process of amorphous magnesium carbonate in aqueous solution. J Mineral Petrol Sci 114(2):105–109CrossRef
31.
go back to reference Fukushi K, Suzuki Y, Kawano J, Ohno T, Ogawa M, Yaji T et al (2017) Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling. Geochim Cosmochim Acta 213:457–474CrossRef Fukushi K, Suzuki Y, Kawano J, Ohno T, Ogawa M, Yaji T et al (2017) Speciation of magnesium in monohydrocalcite: XANES, ab initio and geochemical modeling. Geochim Cosmochim Acta 213:457–474CrossRef
32.
go back to reference Di Tommaso D, de Leeuw NH (2010) Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations. Phys Chem Chem Phys 12(4):894–901CrossRef Di Tommaso D, de Leeuw NH (2010) Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations. Phys Chem Chem Phys 12(4):894–901CrossRef
33.
go back to reference Magbitang RA, Lamorena RB (2016) Carbonate formation on ophiolitic rocks at different pH, salinity and particle size conditions in CO2-sparged suspensions. Inter J Industrial Chem 7(4):359–367CrossRef Magbitang RA, Lamorena RB (2016) Carbonate formation on ophiolitic rocks at different pH, salinity and particle size conditions in CO2-sparged suspensions. Inter J Industrial Chem 7(4):359–367CrossRef
Metadata
Title
Study to improve the reactivity of magnesium cations to CO2 for carbon capture and utilization technology using edible salt manufacturing plant wastewater
Authors
Injun Kim
Jinwon Park
Yunsung Yoo
Publication date
25-01-2023
Publisher
Springer Japan
Published in
Journal of Material Cycles and Waste Management / Issue 2/2023
Print ISSN: 1438-4957
Electronic ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-022-01582-8

Other articles of this Issue 2/2023

Journal of Material Cycles and Waste Management 2/2023 Go to the issue