Skip to main content
Top

2021 | OriginalPaper | Chapter

Studying and Exploiting the Relationship Between Model Accuracy and Explanation Quality

Authors : Yunzhe Jia, Eibe Frank, Bernhard Pfahringer, Albert Bifet, Nick Lim

Published in: Machine Learning and Knowledge Discovery in Databases. Research Track

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many explanation methods have been proposed to reveal insights about the internal procedures of black-box models like deep neural networks. Although these methods are able to generate explanations for individual predictions, little research has been conducted to investigate the relationship of model accuracy and explanation quality, or how to use explanations to improve model performance. In this paper, we evaluate explanations using a metric based on area under the ROC curve (AUC), treating expert-provided image annotations as ground-truth explanations, and quantify the correlation between model accuracy and explanation quality when performing image classifications with deep neural networks. The experiments are conducted using two image datasets: the CUB-200-2011 dataset and a Kahikatea dataset that we publish with this paper. For each dataset, we compare and evaluate seven different neural networks with four different explainers in terms of both accuracy and explanation quality. We also investigate how explanation quality evolves as loss metrics change through the training iterations of each model. The experiments suggest a strong correlation between model accuracy and explanation quality. Based on this observation, we demonstrate how explanations can be exploited to benefit the model selection process—even if simply maximising accuracy on test data is the primary goal.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The code and supplementary material are available at https://​bit.​ly/​3xdcrwS.
 
Literature
1.
go back to reference Avinesh, P., Ren, Y., Meyer, C.M., Chan, J., Bao, Z., Sanderson, M.: J3R: joint multi-task learning of ratings and review summaries for explainable recommendation. In: ECML-PKDD, pp. 339–355 (2019) Avinesh, P., Ren, Y., Meyer, C.M., Chan, J., Bao, Z., Sanderson, M.: J3R: joint multi-task learning of ratings and review summaries for explainable recommendation. In: ECML-PKDD, pp. 339–355 (2019)
2.
go back to reference Buçinca, Z., Lin, P., Gajos, K.Z., Glassman, E.L.: Proxy tasks and subjective measures can be misleading in evaluating explainable AI systems. In: IUI, pp. 454–464 (2020) Buçinca, Z., Lin, P., Gajos, K.Z., Glassman, E.L.: Proxy tasks and subjective measures can be misleading in evaluating explainable AI systems. In: IUI, pp. 454–464 (2020)
3.
go back to reference Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 36(5), 1726–1730 (2009)MathSciNetCrossRef Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 36(5), 1726–1730 (2009)MathSciNetCrossRef
4.
go back to reference Chen, Z., Wang, X., Xie, X., Wu, T., Bu, G., Wang, Y., Chen, E.: Co-attentive multi-task learning for explainable recommendation. In: IJCAI, pp. 2137–2143 (2019) Chen, Z., Wang, X., Xie, X., Wu, T., Bu, G., Wang, Y., Chen, E.: Co-attentive multi-task learning for explainable recommendation. In: IJCAI, pp. 2137–2143 (2019)
5.
go back to reference Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: NIPS, pp. 24–30 (1995) Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In: NIPS, pp. 24–30 (1995)
6.
go back to reference Guidotti, R.: Evaluating local explanation methods on ground truth. Artif. Intell. 291, 103428 (2021) Guidotti, R.: Evaluating local explanation methods on ground truth. Artif. Intell. 291, 103428 (2021)
7.
go back to reference Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)CrossRef Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)CrossRef
8.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
9.
go back to reference Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017) Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)
10.
go back to reference Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\) 0.5 MB model size. arXiv:1602.07360 (2016) Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\) 0.5 MB model size. arXiv:​1602.​07360 (2016)
11.
go back to reference Jia, Y., Bailey, J., Ramamohanarao, K., Leckie, C., Houle, M.E.: Improving the quality of explanations with local embedding perturbations. In: KDD, pp. 875–884 (2019) Jia, Y., Bailey, J., Ramamohanarao, K., Leckie, C., Houle, M.E.: Improving the quality of explanations with local embedding perturbations. In: KDD, pp. 875–884 (2019)
12.
go back to reference Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: ICML, pp. 2668–2677 (2018) Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: ICML, pp. 2668–2677 (2018)
15.
go back to reference Lin, Y.S., Lee, W.C., Celik, Z.B.: What do you see? Evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors. arXiv:2009.10639 (2020) Lin, Y.S., Lee, W.C., Celik, Z.B.: What do you see? Evaluation of explainable artificial intelligence (XAI) interpretability through neural backdoors. arXiv:​2009.​10639 (2020)
16.
go back to reference Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017) Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS, pp. 4765–4774 (2017)
18.
go back to reference Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeuRIPS, pp. 8026–8037 (2019) Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeuRIPS, pp. 8026–8037 (2019)
19.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: KDD, pp. 1135–1144 (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the predictions of any classifier. In: KDD, pp. 1135–1144 (2016)
20.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI, vol. 18, pp. 1527–1535 (2018) Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic explanations. In: AAAI, vol. 18, pp. 1527–1535 (2018)
21.
go back to reference Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017) Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)
22.
go back to reference Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: ICML, pp. 3145–3153 (2017) Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: ICML, pp. 3145–3153 (2017)
23.
go back to reference Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:1312.6034 (2013) Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv:​1312.​6034 (2013)
24.
25.
go back to reference Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv:1412.6806 (2014) Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv:​1412.​6806 (2014)
26.
go back to reference Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML, pp. 3319–3328 (2017) Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: ICML, pp. 3319–3328 (2017)
27.
go back to reference Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147 (2013) Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: ICML, pp. 1139–1147 (2013)
28.
go back to reference Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016) Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR, pp. 2818–2826 (2016)
29.
go back to reference Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report, CNS-TR-2011-001, California Institute of Technology (2011) Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report, CNS-TR-2011-001, California Institute of Technology (2011)
30.
go back to reference Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500 (2017) Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR, pp. 1492–1500 (2017)
31.
go back to reference Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016) Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR, pp. 2921–2929 (2016)
Metadata
Title
Studying and Exploiting the Relationship Between Model Accuracy and Explanation Quality
Authors
Yunzhe Jia
Eibe Frank
Bernhard Pfahringer
Albert Bifet
Nick Lim
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-86520-7_43

Premium Partner