Skip to main content
Top

2013 | OriginalPaper | Chapter

3. Studying Nucleation Mechanism of Carbon Nanotubes by Using In Situ TEM

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The electrical and optical properties of CNTs are strongly correlated with the structures. Therefore, one of the most important topics for CNTs research is the structure-controllable synthesis. The key is the understanding of the nucleation and growth mechanism. In this chapter, the nucleation mechanism is investigated by using the in situ TEM method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89CrossRef Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89CrossRef
2.
go back to reference Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62CrossRef Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62CrossRef
3.
go back to reference Baker RTK, Gadbsy GR, Terry S (1975) Formation of carbon filaments from catalysed decompasition of hydrocarbons. Carbon 13:245–246CrossRef Baker RTK, Gadbsy GR, Terry S (1975) Formation of carbon filaments from catalysed decompasition of hydrocarbons. Carbon 13:245–246CrossRef
4.
go back to reference Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638CrossRef Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638CrossRef
5.
go back to reference Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef Dai H, Rinzler AG, Nikolaev P, Thess A, Colbert DT, Smalley RE (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem Phys Lett 260:471–475CrossRef
6.
go back to reference Li F (2001) Synthesis and physical properties of single-walled carbon nanotubes by catalytic decomposition of hydrocarbons. PhD thesis. Chinese Academy of Science, Shenyang Li F (2001) Synthesis and physical properties of single-walled carbon nanotubes by catalytic decomposition of hydrocarbons. PhD thesis. Chinese Academy of Science, Shenyang
7.
go back to reference Ren W-C (2005) Controllable synthesis, growth mechanism and physical properties of carbon nanotubes. PhD thesis. Academy of Sciences, Shenyang Ren W-C (2005) Controllable synthesis, growth mechanism and physical properties of carbon nanotubes. PhD thesis. Academy of Sciences, Shenyang
8.
go back to reference Huang SM, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4:1025–1028CrossRef Huang SM, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4:1025–1028CrossRef
9.
go back to reference Huang JY (2007) In Situ observation of quasimelting of diamond and reversible graphite — diamond phase transformations. Nano Lett 7:2335–2340CrossRef Huang JY (2007) In Situ observation of quasimelting of diamond and reversible graphite — diamond phase transformations. Nano Lett 7:2335–2340CrossRef
10.
go back to reference Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef Helveg S, López-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429CrossRef
11.
go back to reference Hofmann S, Blume R, Wirth CT, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J (2009) State of transition metal catalysts during carbon nanotube growth. J Phys Chem C 113:1648–1656CrossRef Hofmann S, Blume R, Wirth CT, Cantoro M, Sharma R, Ducati C, Hävecker M, Zafeiratos S, Schnoerch P, Oestereich A, Teschner D, Albrecht M, Knop-Gericke A, Schlögl R, Robertson J (2009) State of transition metal catalysts during carbon nanotube growth. J Phys Chem C 113:1648–1656CrossRef
12.
go back to reference Yoshida H, Takeda S, Uchiyama T, Kohno H, Homma Y (2008) Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086CrossRef Yoshida H, Takeda S, Uchiyama T, Kohno H, Homma Y (2008) Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8:2082–2086CrossRef
13.
go back to reference Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645CrossRef Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y (2006) Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 6:2642–2645CrossRef
14.
go back to reference Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM, Kong J (2007) CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc 129:1516–1517CrossRef Bhaviripudi S, Mile E, Steiner SA, Zare AT, Dresselhaus MS, Belcher AM, Kong J (2007) CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am Chem Soc 129:1516–1517CrossRef
15.
go back to reference Takagi D, Kobayashi Y, Hlbirio H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832–835CrossRef Takagi D, Kobayashi Y, Hlbirio H, Suzuki S, Homma Y (2008) Mechanism of gold-catalyzed carbon material growth. Nano Lett 8:832–835CrossRef
16.
go back to reference Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef Zhou W, Han Z, Wang J, Zhang Y, Jin Z, Sun X, Zhang Y, Yan C, Li Y (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett 6:2987–2990CrossRef
17.
go back to reference Ritschel M, Leonhardt A, Elefant D, Oswald S, Büchner B (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417CrossRef Ritschel M, Leonhardt A, Elefant D, Oswald S, Büchner B (2007) Rhenium-catalyzed growth carbon nanotubes. J Phys Chem C 111:8414–8417CrossRef
18.
go back to reference Liu B, Ren W, Gao L, Li S, Liu Q, Jiang C, Cheng H-M (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235CrossRef Liu B, Ren W, Gao L, Li S, Liu Q, Jiang C, Cheng H-M (2008) Manganese-catalyzed surface growth of single-walled carbon nanotubes with high efficiency. J Phys Chem C 112:19231–19235CrossRef
19.
go back to reference Zhang Y, Zhou W, Jin Z, Ding L, Zhang Z, Liang X, Li Y (2008) Direct growth of single-walled carbon nanotubes without metallic residues by using lead as a catalyst. Chem Mater 20:7521–7525CrossRef Zhang Y, Zhou W, Jin Z, Ding L, Zhang Z, Liang X, Li Y (2008) Direct growth of single-walled carbon nanotubes without metallic residues by using lead as a catalyst. Chem Mater 20:7521–7525CrossRef
20.
go back to reference Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579CrossRef Yuan D, Ding L, Chu H, Feng Y, McNicholas TP, Liu J (2008) Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett 8:2576–2579CrossRef
21.
go back to reference Homma Y, Liu HP, Takagi D, Kobayashi Y (2009) Single-walled carbon nanotube growth with non-Iron-group “Catalysts” by chemical vapor deposition. Nano Res 2:793–799CrossRef Homma Y, Liu HP, Takagi D, Kobayashi Y (2009) Single-walled carbon nanotube growth with non-Iron-group “Catalysts” by chemical vapor deposition. Nano Res 2:793–799CrossRef
22.
go back to reference Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275CrossRef Takagi D, Hibino H, Suzuki S, Kobayashi Y, Homma Y (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275CrossRef
23.
go back to reference Liu B, Ren W, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H-M (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRef Liu B, Ren W, Gao L, Li S, Pei S, Liu C, Jiang C, Cheng H-M (2009) Metal-catalyst-free growth of single-walled carbon nanotubes. J Am Chem Soc 131:2082–2083CrossRef
24.
go back to reference Huang S, Cai Q, Chen J, Qian Y, Zhang L (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095CrossRef Huang S, Cai Q, Chen J, Qian Y, Zhang L (2009) Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J Am Chem Soc 131:2094–2095CrossRef
25.
go back to reference Hirsch A (2009) Growth of single-walled carbon nanotubes without a metal catalyst-A surprising discovery. Angew Chem Int Ed 48:5403–5404CrossRef Hirsch A (2009) Growth of single-walled carbon nanotubes without a metal catalyst-A surprising discovery. Angew Chem Int Ed 48:5403–5404CrossRef
26.
go back to reference Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlögl R, Hart AJ, Hofmann S, Wardle BL (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154CrossRef Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlögl R, Hart AJ, Hofmann S, Wardle BL (2009) Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–12154CrossRef
27.
go back to reference Gao FL, Zhang LJ, Huang SM (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326CrossRef Gao FL, Zhang LJ, Huang SM (2010) Zinc oxide catalyzed growth of single-walled carbon nanotubes. Appl Surf Sci 256:2323–2326CrossRef
28.
go back to reference Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef Takagi D, Kobayashi Y, Homma Y (2009) Carbon nanotube growth from diamond. J Am Chem Soc 131:6922–6923CrossRef
29.
go back to reference Rao F, Li T, Wang Y (2009) Growth of “all-carbon” single-walled carbon nanotubes from diamonds and fullerenes. Carbon 47:3580–3584CrossRef Rao F, Li T, Wang Y (2009) Growth of “all-carbon” single-walled carbon nanotubes from diamonds and fullerenes. Carbon 47:3580–3584CrossRef
30.
go back to reference Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677CrossRef Yao Y, Feng C, Zhang J, Liu Z (2009) Cloning of single-walled carbon nanotubes via open-end growth mechanism. Nano Lett 9:1673–1677CrossRef
31.
go back to reference Liu B, Ren W, Liu C, Sun C-H, Gao L, Li S, Jiang C, Cheng H-M (2009) Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process. ACS Nano 3:3421–3430CrossRef Liu B, Ren W, Liu C, Sun C-H, Gao L, Li S, Jiang C, Cheng H-M (2009) Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process. ACS Nano 3:3421–3430CrossRef
32.
go back to reference Bachmatiuk A, Börrnert F, Grobosch M, Schäffel F, Wolff U, Scott A, Zaka M, Warner JH, Klingeler Rd, Knupfer M, Büchner B, Rümmeli MH (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104CrossRef Bachmatiuk A, Börrnert F, Grobosch M, Schäffel F, Wolff U, Scott A, Zaka M, Warner JH, Klingeler Rd, Knupfer M, Büchner B, Rümmeli MH (2009) Investigating the graphitization mechanism of SiO2 nanoparticles in chemical vapor deposition. ACS Nano 3:4098–4104CrossRef
33.
go back to reference Sharma R, Iqbal Z (2004) In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl Phys Lett 84:990–992CrossRef Sharma R, Iqbal Z (2004) In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl Phys Lett 84:990–992CrossRef
34.
go back to reference Sharma R, Rez P, Treacy MMJ, Stuart SJ (2005) In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J Electron Microsc 54:231–237CrossRef Sharma R, Rez P, Treacy MMJ, Stuart SJ (2005) In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J Electron Microsc 54:231–237CrossRef
35.
go back to reference Lin M, Tan JPY, Boothroyd C, Loh KP, Tok ES, Foo YL (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452CrossRef Lin M, Tan JPY, Boothroyd C, Loh KP, Tok ES, Foo YL (2006) Direct observation of single-walled carbon nanotube growth at the atomistic scale. Nano Lett 6:449–452CrossRef
36.
go back to reference Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608CrossRef Hofmann S, Sharma R, Ducati C, Du G, Mattevi C, Cepek C, Cantoro M, Pisana S, Parvez A, Cervantes-Sodi F, Ferrari AC, Dunin-Borkowski R, Lizzit S, Petaccia L, Goldoni A, Robertson J (2007) In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 7:602–608CrossRef
37.
go back to reference Liu B, Tang D-M, Sun C, Liu C, Ren W, Li F, Yu W-J, Yin L-C, Zhang L, Jiang C, Cheng H-M (2011) Importance of oxygen in the Metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor–solid–solid mechanism. J Am Chem Soc 133:197–199CrossRef Liu B, Tang D-M, Sun C, Liu C, Ren W, Li F, Yu W-J, Yin L-C, Zhang L, Jiang C, Cheng H-M (2011) Importance of oxygen in the Metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor–solid–solid mechanism. J Am Chem Soc 133:197–199CrossRef
38.
go back to reference Tsukimoto S, Sasaki K, Hirayama T, Saka H (1997) Vibration of an interface between Si and SiO2 during reduction of SiO2. Philos Mag Lett 76:173–179CrossRef Tsukimoto S, Sasaki K, Hirayama T, Saka H (1997) Vibration of an interface between Si and SiO2 during reduction of SiO2. Philos Mag Lett 76:173–179CrossRef
39.
go back to reference Wang Y, Huang J, Jiao T, Zhu Y, Hamza A (2007) Abnormal strain hardening in nanostructured titanium at high strain rates and large strains. J Mater Sci 42:1751–1756CrossRef Wang Y, Huang J, Jiao T, Zhu Y, Hamza A (2007) Abnormal strain hardening in nanostructured titanium at high strain rates and large strains. J Mater Sci 42:1751–1756CrossRef
40.
go back to reference Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosen A, Bolton K (2007) The importance of strong carbon –metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett 8:463–468CrossRef Ding F, Larsson P, Larsson JA, Ahuja R, Duan H, Rosen A, Bolton K (2007) The importance of strong carbon –metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett 8:463–468CrossRef
41.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
42.
go back to reference Tang DM, Liu C, Li F, Ren WC, Du JH, Ma XL, Cheng HM (2009) Structural evolution of carbon microcoils induced by a direct current. Carbon 47:670–674CrossRef Tang DM, Liu C, Li F, Ren WC, Du JH, Ma XL, Cheng HM (2009) Structural evolution of carbon microcoils induced by a direct current. Carbon 47:670–674CrossRef
43.
go back to reference Wu FY, Du JH, Liu CG, Li LX, Cheng HM (2004) The microstructure and energy storage characteristics of micro-coiled carbon fibers. New Carbon Mater 19:81–86 Wu FY, Du JH, Liu CG, Li LX, Cheng HM (2004) The microstructure and energy storage characteristics of micro-coiled carbon fibers. New Carbon Mater 19:81–86
44.
go back to reference Wu FY, Cheng HM (2005) Structure and thermal expansion of multi-walled carbon nanotubes before and after high temperature treatment. J Phys D-Appl Phys 38:4302–4307CrossRef Wu FY, Cheng HM (2005) Structure and thermal expansion of multi-walled carbon nanotubes before and after high temperature treatment. J Phys D-Appl Phys 38:4302–4307CrossRef
45.
go back to reference Svensson K, Olin H, Olsson E (2004) Nanopipettes for metal transport. Phys Rev Lett 93:145901CrossRef Svensson K, Olin H, Olsson E (2004) Nanopipettes for metal transport. Phys Rev Lett 93:145901CrossRef
46.
go back to reference Regan BC, Aloni S, Ritchie RO, Dahmen U, Zettl A (2004) Carbon nanotubes as nanoscale mass conveyors. Nature 428:924–927CrossRef Regan BC, Aloni S, Ritchie RO, Dahmen U, Zettl A (2004) Carbon nanotubes as nanoscale mass conveyors. Nature 428:924–927CrossRef
47.
go back to reference Heinze S, Wang N-P, Tersoff J (2005) Electromigration forces on ions in carbon nanotubes. Phys Rev Lett 95: 186802 Heinze S, Wang N-P, Tersoff J (2005) Electromigration forces on ions in carbon nanotubes. Phys Rev Lett 95: 186802
48.
go back to reference Guo T, Jin CM, Smalley RE (1991) Doping bucky—formation and properties of boron-doped buckminsterfullerene. J Phys Chem 95:4948–4950CrossRef Guo T, Jin CM, Smalley RE (1991) Doping bucky—formation and properties of boron-doped buckminsterfullerene. J Phys Chem 95:4948–4950CrossRef
49.
go back to reference Miyamoto Y, Rubio A, Cohen ML, Louie SG (1994) Chiral tubules of hexagonal BC2 N. Phys Rev B 50:4976CrossRef Miyamoto Y, Rubio A, Cohen ML, Louie SG (1994) Chiral tubules of hexagonal BC2 N. Phys Rev B 50:4976CrossRef
50.
go back to reference Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574CrossRef Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574CrossRef
51.
go back to reference Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430–435CrossRef Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430–435CrossRef
52.
go back to reference Tang DM, Liu C, Cheng HM (2006) Platelet boron nitride nanowires. NANO 1:65–71CrossRef Tang DM, Liu C, Cheng HM (2006) Platelet boron nitride nanowires. NANO 1:65–71CrossRef
53.
go back to reference Tang DM, Liu C, Cheng HM (2007) Controlled synthesis of quasi-one-dimensional boron nitride nanostructures. J Mater Res 22:2809–2816CrossRef Tang DM, Liu C, Cheng HM (2007) Controlled synthesis of quasi-one-dimensional boron nitride nanostructures. J Mater Res 22:2809–2816CrossRef
54.
go back to reference Tang DM, Zhang LL, Liu C, Yin LC, Hou PX, Jiang H, Zhu Z, Li F, Liu BL, Kauppinen EI, Cheng HM (2012) Heteroepitaxial growth of single-walled carbon nanotubes from boron nitride. Sci Report 2:971 Tang DM, Zhang LL, Liu C, Yin LC, Hou PX, Jiang H, Zhu Z, Li F, Liu BL, Kauppinen EI, Cheng HM (2012) Heteroepitaxial growth of single-walled carbon nanotubes from boron nitride. Sci Report 2:971
55.
go back to reference Dames C, Chen S, Harris CT, Huang JY, Ren ZF, Dresselhaus MS, Chen G (2007) A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev Sci Instrum 78:104903 Dames C, Chen S, Harris CT, Huang JY, Ren ZF, Dresselhaus MS, Chen G (2007) A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev Sci Instrum 78:104903
56.
go back to reference Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366CrossRef Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366CrossRef
57.
go back to reference Huang JY, Ding F, Jiao K, Yakobson BI (2007) Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Phys Rev Lett 99:175503CrossRef Huang JY, Ding F, Jiao K, Yakobson BI (2007) Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation. Phys Rev Lett 99:175503CrossRef
58.
go back to reference Chen Y, Zou J, Campbell SJ, Le Caer G (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432CrossRef Chen Y, Zou J, Campbell SJ, Le Caer G (2004) Boron nitride nanotubes: pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432CrossRef
59.
go back to reference Chen S, Huang JY, Wang Z, Kempa K, Chen G, Ren ZF (2005) High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes. Appl Phys Lett 87:263107–2631030CrossRef Chen S, Huang JY, Wang Z, Kempa K, Chen G, Ren ZF (2005) High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes. Appl Phys Lett 87:263107–2631030CrossRef
60.
go back to reference Huang JY, Chen S, Ren ZF, Wang ZQ, Wang DZ, Vaziri M, Suo Z, Chen G, Dresselhaus MS (2006) Kink formation and motion in carbon nanotubes at high temperatures. Phys Rev Lett 97:075501CrossRef Huang JY, Chen S, Ren ZF, Wang ZQ, Wang DZ, Vaziri M, Suo Z, Chen G, Dresselhaus MS (2006) Kink formation and motion in carbon nanotubes at high temperatures. Phys Rev Lett 97:075501CrossRef
Metadata
Title
Studying Nucleation Mechanism of Carbon Nanotubes by Using In Situ TEM
Author
Dai-Ming Tang
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37259-9_3

Premium Partners