Skip to main content
Top
Published in: Distributed Computing 3/2022

26-11-2021

Sublinear-time distributed algorithms for detecting small cliques and even cycles

Authors: Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, Rotem Oshman

Published in: Distributed Computing | Issue 3/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper we give sublinear-time distributed algorithms in the \(\mathsf {CONGEST}\) model for finding or listing cliques and even-length cycles. We show for the first time that all copies of 4-cliques and 5-cliques in the network graph can be detected and listed in sublinear time, \(O(n^{5/6+o(1)})\) rounds and \(O(n^{73/75+o(1)})\) rounds, respectively. For even-length cycles, \(C_{2k}\), we give an improved sublinear-time algorithm, which exploits a new connection to extremal combinatorics. For example, for 6-cycles we improve the running time from \({\tilde{O}}(n^{5/6})\) to \({\tilde{O}}(n^{3/4})\) rounds. We also show two obstacles on proving lower bounds for \(C_{2k}\)-freeness: first, we use the new connection to extremal combinatorics to show that the current lower bound of \({\tilde{\varOmega }}(\sqrt{n})\) rounds for 6-cycle freeness cannot be improved using partition-based reductions from 2-party communication complexity, the technique by which all known lower bounds on subgraph detection have been proven to date. Second, we show that there is some fixed constant \(\delta \in (0,1/2)\) such that for any k, a lower bound of \(\varOmega (n^{1/2+\delta })\) on \(C_{2k}\)-freeness would imply new lower bounds in circuit complexity. We use the same technique to show a barrier for proving any polynomial lower bound on triangle-freeness. For general subgraphs, it was shown by Fischer et al. that for any fixed k, there exists a subgraph H of size k such that H-freeness requires \({\tilde{\varOmega }}(n^{2-\varTheta (1/k)})\) rounds. It was left as an open problem whether this is tight, or whether some constant-sized subgraph requires truly quadratic time to detect. We show that in fact, for any subgraph H of constant size k, the H-freeness problem can be solved in \(O(n^{2 - \varTheta (1/k)})\) rounds, nearly matching the lower bound.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We present the theorem in terms of mixing time, and not conductance. In addition, the minimum degree requirement is not mentioned explicitly in the original theorem, despite the fact that it is proven and strongly used throughout [12].
 
2
Unfortunately, there is an error in the analysis of the conductance of a cluster in [12], and the theorem is cited with corrected parameters. This issue causes the round complexity of our algorithm to become \(n^{73/75+o(1)}\) instead of the \(n^{21/22+o(1)}\) claimed in the conference version of this paper. We thank the anonymous reviewer who brought this to our attention.
 
3
Note that the random variables \(R_v\) are actually geometrically distributed. We use the construction using exponential random variables to be consistent with the work in [15, 31].
 
4
For a graph with N edges \(\{(u_i,v_i)\}_{i=1}^N\), the graph is encoded by the string \(u_1.id,v_1.id,\dots ,u_N.id,v_N.id\), where each id is padded to \(\lceil \log {N} \rceil \) bits, and the rest of the string is padded in such a manner that indicates that there are no further edges.
 
Literature
1.
go back to reference Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2013) Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2013)
2.
3.
go back to reference Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Distrib. Comput. 24(2), 79–89 (2011)CrossRef Brakerski, Z., Patt-Shamir, B.: Distributed discovery of large near-cliques. Distrib. Comput. 24(2), 79–89 (2011)CrossRef
4.
go back to reference Bukh, B., Jiang, Z.: A bound on the number of edges in graphs without an even cycle. Combin. Probab. Comput. 26(1), 1–15 (2017)MathSciNetCrossRef Bukh, B., Jiang, Z.: A bound on the number of edges in graphs without an even cycle. Combin. Probab. Comput. 26(1), 1–15 (2017)MathSciNetCrossRef
5.
go back to reference Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algorithms for testing graph properties. In: Distributed Computing: 30th International Symposium, DISC 2016. Proceedings, pp. 43–56 (2016) Censor-Hillel, K., Fischer, E., Schwartzman, G., Vasudev, Y.: Fast distributed algorithms for testing graph properties. In: Distributed Computing: 30th International Symposium, DISC 2016. Proceedings, pp. 43–56 (2016)
6.
go back to reference Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, pages 143–152 (2015) Censor-Hillel, K., Kaski, P., Korhonen, J.H., Lenzen, C., Paz, A., Suomela, J.: Algebraic methods in the congested clique. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, pages 143–152 (2015)
7.
go back to reference Chang, Y.-J., Pettie, S., Zhang, H.: Distributed triangle detection via expander decomposition. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 821–840 (2019) Chang, Y.-J., Pettie, S., Zhang, H.: Distributed triangle detection via expander decomposition. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp. 821–840 (2019)
8.
go back to reference Chang, Y.-J., Saranurak, T.: Improved distributed expander decomposition and nearly optimal triangle enumeration. CoRR, abs/1904.08037, 2019. arXiv:1904.08037 Chang, Y.-J., Saranurak, T.: Improved distributed expander decomposition and nearly optimal triangle enumeration. CoRR, abs/1904.08037, 2019. arXiv:​1904.​08037
9.
10.
go back to reference Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour spreading with conductance. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM symposium on theory of computing STOC, pp. 399–408. ACM (2010) Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour spreading with conductance. In: Schulman, L.J. (ed.) Proceedings of the 42nd ACM symposium on theory of computing STOC, pp. 399–408. ACM (2010)
11.
go back to reference Czumaj, A., Konrad, C.: Detecting cliques in CONGEST networks. In: 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15–19, 2018, pp. 16:1–16:15 (2018) Czumaj, A., Konrad, C.: Detecting cliques in CONGEST networks. In: 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15–19, 2018, pp. 16:1–16:15 (2018)
12.
go back to reference Daga, M., Henzinger, M., Nanongkai, D., Saranurak, T.: Distributed edge connectivity in sublinear time. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 343–354 (2019) Daga, M., Henzinger, M., Nanongkai, D., Saranurak, T.: Distributed edge connectivity in sublinear time. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pp. 343–354 (2019)
13.
go back to reference Dolev, D., Lenzen, C., Peled, S.: “tri, tri again”: Finding triangles and small subgraphs in a distributed setting. In: Distributed Computing: 26th International Symposium, DISC 2012. Proceedings, pp. 195–209 (2012) Dolev, D., Lenzen, C., Peled, S.: “tri, tri again”: Finding triangles and small subgraphs in a distributed setting. In: Distributed Computing: 26th International Symposium, DISC 2012. Proceedings, pp. 195–209 (2012)
14.
go back to reference Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14, pp. 367–376 (2014) Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14, pp. 367–376 (2014)
15.
go back to reference Elkin, M., Neiman, O.: Distributed strong diameter network decomposition. In: Proceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC), pp. 211–216 (2016) Elkin, M., Neiman, O.: Distributed strong diameter network decomposition. In: Proceedings of the 35th ACM Symposium on Principles of Distributed Computing (PODC), pp. 211–216 (2016)
16.
go back to reference Even, G., Fischer, O., Fraigniaud, P., Gonen, T., Levi, R., Medina, M., Montealegre, P., Olivetti, D., Oshman, R., Rapaport, I., Todinca, I.: Three notes on distributed property testing. In: 31st International Symposium on Distributed Computing (DISC 2017), vol. 91 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 15:1–15:30 (2017) Even, G., Fischer, O., Fraigniaud, P., Gonen, T., Levi, R., Medina, M., Montealegre, P., Olivetti, D., Oshman, R., Rapaport, I., Todinca, I.: Three notes on distributed property testing. In: 31st International Symposium on Distributed Computing (DISC 2017), vol. 91 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 15:1–15:30 (2017)
17.
go back to reference Fischer, O., Gonen, T., Kuhn, F., Oshman, R.: Possibilities and impossibilities for distributed subgraph detection. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18, 2018, pp. 153–162 (2018) Fischer, O., Gonen, T., Kuhn, F., Oshman, R.: Possibilities and impossibilities for distributed subgraph detection. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16-18, 2018, pp. 153–162 (2018)
18.
go back to reference Fraigniaud, P., Olivetti, D.: Distributed detection of cycles. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July 24–26, 2017, pp. 153–162 (2017) Fraigniaud, P., Olivetti, D.: Distributed detection of cycles. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July 24–26, 2017, pp. 153–162 (2017)
19.
go back to reference Fraigniaud, P., Rapaport, I., Salo, V., Todinca, I.: Distributed testing of excluded subgraphs. In: Distributed Computing: 30th International Symposium, DISC 2016. Proceedings, pp. 342–356 (2016) Fraigniaud, P., Rapaport, I., Salo, V., Todinca, I.: Distributed testing of excluded subgraphs. In: Distributed Computing: 30th International Symposium, DISC 2016. Proceedings, pp. 342–356 (2016)
20.
go back to reference Füredi, Z., Simonovits, M.: The history of degenerate (bipartite) extremal graph problems. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds.) Erdős Centennial, pp. 169–264. Springer, Berlin (2013) Füredi, Z., Simonovits, M.: The history of degenerate (bipartite) extremal graph problems. In: Lovász, L., Ruzsa, I.Z., Sós, V.T. (eds.) Erdős Centennial, pp. 169–264. Springer, Berlin (2013)
21.
go back to reference Ghaffari, M.: Near-optimal scheduling of distributed algorithms. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, pp. 3–12 (2015) Ghaffari, M.: Near-optimal scheduling of distributed algorithms. In: Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC 2015, pp. 3–12 (2015)
22.
go back to reference Ghaffari, M., Kuhn, F.: Derandomizing distributed algorithms with small messages: Spanners and dominating set. In: 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, pp. 29:1–29:17 (2018) Ghaffari, M., Kuhn, F.: Derandomizing distributed algorithms with small messages: Spanners and dominating set. In: 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, pp. 29:1–29:17 (2018)
23.
go back to reference Ghaffari, M., Kuhn, F., Su, H.-H.: Distributed MST and routing in almost mixing time. In: Proceedings of the ACM symposium on principles of distributed computing, PODC 2017, Washington, DC, USA, July 25–27, 2017, pp. 131–140 (2017) Ghaffari, M., Kuhn, F., Su, H.-H.: Distributed MST and routing in almost mixing time. In: Proceedings of the ACM symposium on principles of distributed computing, PODC 2017, Washington, DC, USA, July 25–27, 2017, pp. 131–140 (2017)
24.
go back to reference Ghaffari, M., Li, J.: New distributed algorithms in almost mixing time via transformations from parallel algorithms. In: 32nd International Symposium on Distributed Computing (DISC), pp. 31:1–31:16 (2018) Ghaffari, M., Li, J.: New distributed algorithms in almost mixing time via transformations from parallel algorithms. In: 32nd International Symposium on Distributed Computing (DISC), pp. 31:1–31:16 (2018)
25.
go back to reference Golovnev, A., Kulikov, A.S., Ryan W.R.: Circuit depth reductions. In: Lee, J.R. (ed.) 12th Innovations in Theoretical Computer Science Conference, ITCS, volume 185 of LIPIcs, pp. 24:1–24:20. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2021) Golovnev, A., Kulikov, A.S., Ryan W.R.: Circuit depth reductions. In: Lee, J.R. (ed.) 12th Innovations in Theoretical Computer Science Conference, ITCS, volume 185 of LIPIcs, pp. 24:1–24:20. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2021)
26.
go back to reference Gonen, T., Oshman, R.: Lower bounds for subgraph detection in the congest model. To appear in OPODIS 2017 (2017) Gonen, T., Oshman, R.: Lower bounds for subgraph detection in the congest model. To appear in OPODIS 2017 (2017)
27.
go back to reference Izumi, T., Le Gall, F.: Triangle finding and listing in congest networks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17, pp. 381–389 (2017) Izumi, T., Le Gall, F.: Triangle finding and listing in congest networks. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17, pp. 381–389 (2017)
28.
go back to reference Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6), 1149–1178 (1989) Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6), 1149–1178 (1989)
29.
go back to reference Korhonen, J.H., Rybicki, J.: Deterministic subgraph detection in broadcast CONGEST. In: 21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, pp. 4:1–4:16 (2017) Korhonen, J.H., Rybicki, J.: Deterministic subgraph detection in broadcast CONGEST. In: 21st International Conference on Principles of Distributed Systems, OPODIS 2017, Lisbon, Portugal, December 18-20, 2017, pp. 4:1–4:16 (2017)
30.
go back to reference Malpani, A., Agrawal, D.: Efficient information dissemination in computer networks. In: Proceedings of the 14th Conference on Local Computer Networks, LCN 1989, 1989, Minneapolis, Minnesota, USA, pp. 202–211 (1989) Malpani, A., Agrawal, D.: Efficient information dissemination in computer networks. In: Proceedings of the 14th Conference on Local Computer Networks, LCN 1989, 1989, Minneapolis, Minnesota, USA, pp. 202–211 (1989)
31.
go back to reference Miller, G.L., Peng, R., Xu, S.C.: Parallel graph decompositions using random shifts. In: Proceedings of the 5th Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 196–203 (2013) Miller, G.L., Peng, R., Xu, S.C.: Parallel graph decompositions using random shifts. In: Proceedings of the 5th Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 196–203 (2013)
32.
go back to reference Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Comb. Probab. Comput. 14(5–6), 845–849 (2005) Naor, A., Verstraëte, J.: A note on bipartite graphs without 2k-cycles. Comb. Probab. Comput. 14(5–6), 845–849 (2005)
33.
34.
go back to reference Pandurangan, G., Robinson, P., Scquizzato, M.: On the distributed complexity of large-scale graph computations. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16–18, 2018, pp. 405–414 (2018) Pandurangan, G., Robinson, P., Scquizzato, M.: On the distributed complexity of large-scale graph computations. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018, Vienna, Austria, July 16–18, 2018, pp. 405–414 (2018)
35.
36.
go back to reference Rozhon, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Konstantin, M., Yury, M., Madhur, T., Gautam, K., Julia, C. (eds.) Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 350–363. ACM (2020) Rozhon, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Konstantin, M., Yury, M., Madhur, T., Gautam, K., Julia, C. (eds.) Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 350–363. ACM (2020)
37.
go back to reference Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRef Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)MathSciNetCrossRef
38.
go back to reference Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-hoeffding bounds for applications with limited independence. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, pp. 331–340 (1993) Schmidt, J.P., Siegel, A., Srinivasan, A.: Chernoff-hoeffding bounds for applications with limited independence. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’93, pp. 331–340 (1993)
39.
go back to reference Szell, M., Thurner, S.: Measuring social dynamics in a massive multiplayer online game. Soc. Netw. 32(4), 313–329 (2010)CrossRef Szell, M., Thurner, S.: Measuring social dynamics in a massive multiplayer online game. Soc. Netw. 32(4), 313–329 (2010)CrossRef
40.
go back to reference Verstraëte, J.: Extremal problems for cycles in graphs. In: Recent Trends in Combinatorics, pp. 83–116. Springer (2016) Verstraëte, J.: Extremal problems for cycles in graphs. In: Recent Trends in Combinatorics, pp. 83–116. Springer (2016)
41.
go back to reference Wasserman, S., Faust, K.: Social network analysis: methods and applications. Structural Analysis in the Social Sciences. Cambridge University Press, (1994) Wasserman, S., Faust, K.: Social network analysis: methods and applications. Structural Analysis in the Social Sciences. Cambridge University Press, (1994)
42.
go back to reference Watts, D.J.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998) Watts, D.J.: Collective dynamics of ’small-world’ networks. Nature 393, 440 (1998)
Metadata
Title
Sublinear-time distributed algorithms for detecting small cliques and even cycles
Authors
Talya Eden
Nimrod Fiat
Orr Fischer
Fabian Kuhn
Rotem Oshman
Publication date
26-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Distributed Computing / Issue 3/2022
Print ISSN: 0178-2770
Electronic ISSN: 1432-0452
DOI
https://doi.org/10.1007/s00446-021-00409-3

Premium Partner