Skip to main content
Top

2019 | OriginalPaper | Chapter

Subspace Clustering—A Survey

Authors : Bhagyashri A. Kelkar, Sunil F. Rodd

Published in: Data Management, Analytics and Innovation

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-dimensional data clustering is gaining attention in recent years due to its widespread applications in many domains like social networking, biology, etc. As a result of the advances in the data gathering and data storage technologies, many a times a single data object is often represented by many attributes. Although more data may provide new insights, it may also hinder the knowledge discovery process by cluttering the interesting relations with redundant information. The traditional definition of similarity becomes meaningless in high-dimensional data. Hence, clustering methods based on similarity between objects fail to cope with increased dimensionality of data. A dataset with large dimensionality can be better described in its subspaces than as a whole. Subspace clustering algorithms identify clusters existing in multiple, overlapping subspaces. Subspace clustering methods are further classified as top-down and bottom-up algorithms depending on strategy applied to identify subspaces. Initial clustering in case of top-down algorithms is based on full set of dimensions and it then iterates to identify subset of dimensions which can better represent the subspaces by removing irrelevant dimensions. Bottom-up algorithms start with low dimensional space and merge dense regions by using Apriori-based hierarchical clustering methods. It has been observed that, the performance and quality of results of a subspace clustering algorithm is highly dependent on the parameter values input to the algorithm. This paper gives an overview of work done in the field of subspace clustering.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bellman, R. (1961). Adaptive control processes. Princeton: Princeton University Press.CrossRef Bellman, R. (1961). Adaptive control processes. Princeton: Princeton University Press.CrossRef
2.
go back to reference Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations, 6(1), 90–105.CrossRef Parsons, L., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations, 6(1), 90–105.CrossRef
3.
go back to reference Francois, D., Wertz, V., & Verleysen, M. (2007). The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering, 19(7), 873–886. Francois, D., Wertz, V., & Verleysen, M. (2007). The concentration of fractional distances. IEEE Transactions on Knowledge and Data Engineering, 19(7), 873–886.
4.
go back to reference Agrawal, R., Gehrke, J., & Gunopulos, D. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 94–105). Agrawal, R., Gehrke, J., & Gunopulos, D. (1998). Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 94–105).
5.
go back to reference Liu, G., Sim, K., Li, J., & Wong, L. (2009). Efficient mining of distance-based subspace clusters. Statistical Analysis and Data Mining, 2(5–6), 427–444.MathSciNetCrossRef Liu, G., Sim, K., Li, J., & Wong, L. (2009). Efficient mining of distance-based subspace clusters. Statistical Analysis and Data Mining, 2(5–6), 427–444.MathSciNetCrossRef
6.
go back to reference Cheng, C.-H., Fu, A. W., & Zhang, Y. (1999). Entropy-based subspace clustering for mining numerical data. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 84–93). Cheng, C.-H., Fu, A. W., & Zhang, Y. (1999). Entropy-based subspace clustering for mining numerical data. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 84–93).
7.
go back to reference Goil, S., Nagesh, H., & Choudhary, A. (1999). Mafia: Efficient and scalable subspace clustering for very large data sets. Technical Report CPDC-TR-9906-010, Northwestern University. Goil, S., Nagesh, H., & Choudhary, A. (1999). Mafia: Efficient and scalable subspace clustering for very large data sets. Technical Report CPDC-TR-9906-010, Northwestern University.
8.
go back to reference Kröger, P., Kriegel, H.-P., & Kailing, K. (2004). Density-connected subspace clustering for high-dimensional data. In Proceedings of SIAM International Conference on Data Mining (pp. 246–257). Kröger, P., Kriegel, H.-P., & Kailing, K. (2004). Density-connected subspace clustering for high-dimensional data. In Proceedings of SIAM International Conference on Data Mining (pp. 246–257).
9.
go back to reference Kriegel, H.-P. H., Kroger, P., Renz, M., & Wurst, S. (2005). A generic framework for efficient subspace clustering of high-dimensional data. In IEEE International Conference on Data Mining (pp. 250–257), Washington, DC, USA. Kriegel, H.-P. H., Kroger, P., Renz, M., & Wurst, S. (2005). A generic framework for efficient subspace clustering of high-dimensional data. In IEEE International Conference on Data Mining (pp. 250–257), Washington, DC, USA.
10.
go back to reference Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., et al. (1999). Fast algorithms for projected clustering. In Proceedings of the ACM International Conference on Management of Data (SIGMOD) (pp. 61–72), Philadelphia, PA. Aggarwal, C. C., Procopiuc, C. M., Wolf, J. L., et al. (1999). Fast algorithms for projected clustering. In Proceedings of the ACM International Conference on Management of Data (SIGMOD) (pp. 61–72), Philadelphia, PA.
11.
go back to reference Procopiuc, C. M., Jones, M., Agarwal, P. K., & Murali, T. M. (2002). A Monte Carlo algorithm for fast projective clustering in SIGMOD (pp. 418–427). USA. Procopiuc, C. M., Jones, M., Agarwal, P. K., & Murali, T. M. (2002). A Monte Carlo algorithm for fast projective clustering in SIGMOD (pp. 418–427). USA.
12.
go back to reference Bohm, C., Railing, K., Kriegel, H.-P., & Kroger, P. (2004). Density connected clustering with local subspace preferences. In Fourth IEEE International Conference on Data Mining, ICDM (pp. 27–34). Bohm, C., Railing, K., Kriegel, H.-P., & Kroger, P. (2004). Density connected clustering with local subspace preferences. In Fourth IEEE International Conference on Data Mining, ICDM (pp. 27–34).
13.
go back to reference Lance, P., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations Newsletter, 6(1), 90–105.CrossRef Lance, P., Haque, E., & Liu, H. (2004). Subspace clustering for high dimensional data: A review. ACM SIGKDD Explorations Newsletter, 6(1), 90–105.CrossRef
14.
go back to reference Hinneburg, A., & Keim, D. A. (1999). Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. In VLDB (pp. 506–517). Hinneburg, A., & Keim, D. A. (1999). Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. In VLDB (pp. 506–517).
15.
go back to reference Aggarwal, C. C., & Yu, P. S. (2000). Finding generalized projected clusters in high dimensional spaces. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 70–81). Aggarwal, C. C., & Yu, P. S. (2000). Finding generalized projected clusters in high dimensional spaces. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (pp. 70–81).
16.
go back to reference Friedman, J. H., & Meulman, J. J. (2004). Clustering objects on subsets of attributes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) (pp. 815–849). Friedman, J. H., & Meulman, J. J. (2004). Clustering objects on subsets of attributes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) (pp. 815–849).
17.
go back to reference Yang, J., Wang, W., Wang, H., & Yu, P. (2002). δ-Clusters: Capturing subspace correlation in a large data set. In Proceedings of the 18th International Conference on Data Engineering (pp. 517–528). Yang, J., Wang, W., Wang, H., & Yu, P. (2002). δ-Clusters: Capturing subspace correlation in a large data set. In Proceedings of the 18th International Conference on Data Engineering (pp. 517–528).
18.
go back to reference Dash, M., Choi, K., Scheuermann, P., & Liu, H. (2002). Feature selection for clustering – a filter solution. In Proceedings of the IEEE International Conference on Data Mining (ICDM02) (pp. 115–124). Dash, M., Choi, K., Scheuermann, P., & Liu, H. (2002). Feature selection for clustering – a filter solution. In Proceedings of the IEEE International Conference on Data Mining (ICDM02) (pp. 115–124).
19.
go back to reference Patrikainen, A., & Meila, M. (2006). Comparing subspace clusterings. TKDE, 18(7), 902–916. Patrikainen, A., & Meila, M. (2006). Comparing subspace clusterings. TKDE, 18(7), 902–916.
20.
go back to reference Müller, E., Günnemann, S., Assent, I., & Seidl, T. (2009). Evaluating clustering in subspace projections of high dimensional data. PVLDB, 2(1), 1270–1281. Müller, E., Günnemann, S., Assent, I., & Seidl, T. (2009). Evaluating clustering in subspace projections of high dimensional data. PVLDB, 2(1), 1270–1281.
23.
go back to reference Jaya Lakshmi, B., Shashi, M., & Madhuri, K. B. (2017). A rough set based subspace clustering technique for high dimensional data. Journal of King Saud University-Computer and Information Sciences. Jaya Lakshmi, B., Shashi, M., & Madhuri, K. B. (2017). A rough set based subspace clustering technique for high dimensional data. Journal of King Saud University-Computer and Information Sciences.
24.
go back to reference Jaya Lakshmi, B., Madhuri, K. B., & Shashi, M. (2017). An efficient algorithm for density based subspace clustering with dynamic parameter setting. International Journal of Information Technology and Computer Science, 9(6), 27–33.CrossRef Jaya Lakshmi, B., Madhuri, K. B., & Shashi, M. (2017). An efficient algorithm for density based subspace clustering with dynamic parameter setting. International Journal of Information Technology and Computer Science, 9(6), 27–33.CrossRef
25.
go back to reference Tomašev, N., & Radovanović, M. (2016). Clustering evaluation in high-dimensional data. In Unsupervised Learning Algorithms (pp. 71–107). Berlin: Springer. Tomašev, N., & Radovanović, M. (2016). Clustering evaluation in high-dimensional data. In Unsupervised Learning Algorithms (pp. 71–107). Berlin: Springer.
26.
go back to reference Zhu, B., Ordozgoiti, B., & Mozo, A. (2016). PSCEG: An unbiased parallel subspace clustering algorithm using exact grids. In 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning ESSAN16 (pp. 27–29), Bruges (Belgium). Zhu, B., Ordozgoiti, B., & Mozo, A. (2016). PSCEG: An unbiased parallel subspace clustering algorithm using exact grids. In 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning ESSAN16 (pp. 27–29), Bruges (Belgium).
27.
go back to reference Peignier, S., Rigotti, C., & Beslon, G. (2015). Subspace clustering using evolvable genome structure. In Proceedings of the ACM Genetic and Evolutionary Computation Conference (GECCO 2015) (pp. 1–8). Peignier, S., Rigotti, C., & Beslon, G. (2015). Subspace clustering using evolvable genome structure. In Proceedings of the ACM Genetic and Evolutionary Computation Conference (GECCO 2015) (pp. 1–8).
28.
go back to reference Kaur, A., & Datta, A. (2015). A novel algorithm for fast and scalable subspace clustering of high-dimensional data. Journal of Big Data, 2(1), 1–24. Kaur, A., & Datta, A. (2015). A novel algorithm for fast and scalable subspace clustering of high-dimensional data. Journal of Big Data, 2(1), 1–24.
29.
go back to reference Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 2, 165–193.CrossRef Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 2, 165–193.CrossRef
30.
go back to reference Sim, K., Gopalkrishnan, V., Zimek, A., & Cong, G. (2013). A survey on enhanced subspace clustering. Data Mining and Knowledge Discovery, 26(2), 332–397.MathSciNetCrossRef Sim, K., Gopalkrishnan, V., Zimek, A., & Cong, G. (2013). A survey on enhanced subspace clustering. Data Mining and Knowledge Discovery, 26(2), 332–397.MathSciNetCrossRef
31.
go back to reference Liu, H. W., Sun, J., Liu, L., & Zhang, H. J. (2009). Feature selection with dynamic mutual information. Pattern Recognition, 42(7), 1330–1339.CrossRef Liu, H. W., Sun, J., Liu, L., & Zhang, H. J. (2009). Feature selection with dynamic mutual information. Pattern Recognition, 42(7), 1330–1339.CrossRef
32.
go back to reference Kriegel, H. P., Kröger, P., Zimek, A., & Oger, P. K. R. (2009). Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery Data, 3(1), 1–58.CrossRef Kriegel, H. P., Kröger, P., Zimek, A., & Oger, P. K. R. (2009). Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery Data, 3(1), 1–58.CrossRef
Metadata
Title
Subspace Clustering—A Survey
Authors
Bhagyashri A. Kelkar
Sunil F. Rodd
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-1402-5_16