Skip to main content
Top
Published in: Topics in Catalysis 1/2015

01-02-2015 | Original Paper

Substituent Effects in the Pyridinium Catalyzed Reduction of CO2 to Methanol: Further Mechanistic Insights

Authors: Emily E. Barton Cole, Maor F. Baruch, Robert P. L’Esperance, Michael T. Kelly, Prasad S. Lakkaraju, Elizabeth L. Zeitler, Andrew B. Bocarsly

Published in: Topics in Catalysis | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A series of substituted pyridiniums were examined for their catalytic ability to electrochemically reduce carbon dioxide to methanol. It is found that in general increased basicity of the nitrogen of the amine and higher LUMO energy of the pyridinium correlate with enhanced carbon dioxide reduction. The highest faradaic yield for methanol production at a platinum electrode was 39 ± 4 % for 4-aminopyridine compared to 22 ± 2 % for pyridine. However, 4-tertbutyl and 4-dimethylamino pyridine showed decreased catalytic behavior, contrary to the enhanced activity associated with the increased basicity and LUMO energy, and suggesting that steric effects also play a significant role in the behavior of pyridinium electrocatalysts. Mechanistic models for the the reaction of the pyridinium with carbon dioxide are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496 Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2(7):491–496
2.
go back to reference Frese JKW (1993) Electrochemical reduction of CO2 at solid electrodes. In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, pp 145–161CrossRef Frese JKW (1993) Electrochemical reduction of CO2 at solid electrodes. In: Sullivan BP, Krist K, Guard HE (eds) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier, Amsterdam, pp 145–161CrossRef
3.
go back to reference Halmann MM, Steinberg M (1999) Electrochemical reduction of CO2, in greenhouse gas carbon dioxide mitigation: science and technology. In: Steinberg M (ed) Halmann MM. Lewis Publishers, Boca Raton, pp 411–420 Halmann MM, Steinberg M (1999) Electrochemical reduction of CO2, in greenhouse gas carbon dioxide mitigation: science and technology. In: Steinberg M (ed) Halmann MM. Lewis Publishers, Boca Raton, pp 411–420
4.
go back to reference DuBois DL (2006) Carbon. In: Bard AJ, Stratmann J (eds) Encylopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co, Weinheim, p 202 DuBois DL (2006) Carbon. In: Bard AJ, Stratmann J (eds) Encylopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co, Weinheim, p 202
5.
go back to reference Barton-Cole E, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co, Weinheim Barton-Cole E, Bocarsly AB (2010) Photochemical, electrochemical, and photoelectrochemical reduction of carbon dioxide. In: Aresta M (ed) Carbon dioxide as chemical feedstock. Wiley-VCH Verlag GmbH & Co, Weinheim
6.
go back to reference Bandi A, Kuhne HM (1992) Electrochemical reduction of carbon-dioxide in water—analysis of reaction-mechanism on ruthenium–titanium-oxide. J Electrochem Soc 139(6):1605–1610CrossRef Bandi A, Kuhne HM (1992) Electrochemical reduction of carbon-dioxide in water—analysis of reaction-mechanism on ruthenium–titanium-oxide. J Electrochem Soc 139(6):1605–1610CrossRef
7.
go back to reference Frese KW, Leach S (1985) Electrochemical reduction of carbon-dioxide to methane, methanol, and Co on Ru Electrodes. J Electrochem Soc 132(1):259–260CrossRef Frese KW, Leach S (1985) Electrochemical reduction of carbon-dioxide to methane, methanol, and Co on Ru Electrodes. J Electrochem Soc 132(1):259–260CrossRef
8.
go back to reference Popic JP, AvramovIvic ML, Vukovic NB (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421(1–2):105–110CrossRef Popic JP, AvramovIvic ML, Vukovic NB (1997) Reduction of carbon dioxide on ruthenium oxide and modified ruthenium oxide electrodes in 0.5 M NaHCO3. J Electroanal Chem 421(1–2):105–110CrossRef
9.
go back to reference Qu JP et al (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580CrossRef Qu JP et al (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580CrossRef
10.
go back to reference Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372(1–2):145–150CrossRef Seshadri G, Lin C, Bocarsly AB (1994) A new homogeneous electrocatalyst for the reduction of carbon-dioxide to methanol at low overpotential. J Electroanal Chem 372(1–2):145–150CrossRef
11.
go back to reference Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6345CrossRef Barton EE, Rampulla DM, Bocarsly AB (2008) Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. J Am Chem Soc 130(20):6342–6345CrossRef
12.
go back to reference Yan Y et al (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135(38):14020–14023CrossRef Yan Y et al (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135(38):14020–14023CrossRef
13.
go back to reference Costentin C et al (2013) Electrochemistry of acids on platinum. application to the reduction of carbon dioxide in the presence of pyridinium ion in water. J Am Chem Soc 135(47):17671–17674CrossRef Costentin C et al (2013) Electrochemistry of acids on platinum. application to the reduction of carbon dioxide in the presence of pyridinium ion in water. J Am Chem Soc 135(47):17671–17674CrossRef
14.
go back to reference Cole EB et al (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551CrossRef Cole EB et al (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132(33):11539–11551CrossRef
15.
go back to reference Ertem MZ et al (2013) Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J Phys Chem Lett 4(5):745–748CrossRef Ertem MZ et al (2013) Functional role of pyridinium during aqueous electrochemical reduction of CO2 on Pt(111). J Phys Chem Lett 4(5):745–748CrossRef
17.
go back to reference Hwang TL, Shaka AJ (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112(2):275–279CrossRef Hwang TL, Shaka AJ (1995) Water suppression that works—excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson Ser A 112(2):275–279CrossRef
18.
go back to reference Gaussian 03, 2004, Gaussian Inc.: Wallingford, CT. Gaussian 03, 2004, Gaussian Inc.: Wallingford, CT.
19.
go back to reference Baumgartel H, Retzlav KJ (1984) In: Bard AJ, Lund H (eds) Encyclopedia of electrochemistry of the elements. Taylor & Francis, New York, p 194 Baumgartel H, Retzlav KJ (1984) In: Bard AJ, Lund H (eds) Encyclopedia of electrochemistry of the elements. Taylor & Francis, New York, p 194
20.
go back to reference Nicholson RS, Shain I (1964) Theory of stationary electrode polarography—single scan + cyclic methods applied to reversible irreversible + kinetic systems. Anal Chem 36(4):706–723CrossRef Nicholson RS, Shain I (1964) Theory of stationary electrode polarography—single scan + cyclic methods applied to reversible irreversible + kinetic systems. Anal Chem 36(4):706–723CrossRef
21.
go back to reference Ohmstead ML, Nicholso RS (1969) Cyclic voltammetry theory for disproportionation reaction and spherical diffusion. Anal Chem 41(6):862–870CrossRef Ohmstead ML, Nicholso RS (1969) Cyclic voltammetry theory for disproportionation reaction and spherical diffusion. Anal Chem 41(6):862–870CrossRef
22.
go back to reference Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO(2) reduction. Chemsuschem 4(2):191–196CrossRef Morris AJ, McGibbon RT, Bocarsly AB (2011) Electrocatalytic carbon dioxide activation: the rate-determining step of pyridinium-catalyzed CO(2) reduction. Chemsuschem 4(2):191–196CrossRef
23.
go back to reference Keith JA, Carter EA (2012) Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. J Am Chem Soc 134(18):7580–7583CrossRef Keith JA, Carter EA (2012) Theoretical insights into pyridinium-based photoelectrocatalytic reduction of CO2. J Am Chem Soc 134(18):7580–7583CrossRef
24.
go back to reference Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561CrossRef Zhang G, Musgrave CB (2007) Comparison of DFT methods for molecular orbital eigenvalue calculations. J Phys Chem A 111(8):1554–1561CrossRef
Metadata
Title
Substituent Effects in the Pyridinium Catalyzed Reduction of CO2 to Methanol: Further Mechanistic Insights
Authors
Emily E. Barton Cole
Maor F. Baruch
Robert P. L’Esperance
Michael T. Kelly
Prasad S. Lakkaraju
Elizabeth L. Zeitler
Andrew B. Bocarsly
Publication date
01-02-2015
Publisher
Springer US
Published in
Topics in Catalysis / Issue 1/2015
Print ISSN: 1022-5528
Electronic ISSN: 1572-9028
DOI
https://doi.org/10.1007/s11244-014-0343-z

Other articles of this Issue 1/2015

Topics in Catalysis 1/2015 Go to the issue

Preface

Preface

Premium Partners