Skip to main content
Top
Published in: Journal of Materials Science 23/2020

02-02-2020 | Advanced Nano Materials

Sulfur-doped graphene aerogels reinforced with carbon fibers as electrode materials

Authors: Katerina Vrettos, Pinelopi Angelopoulou, Joan Papavasiliou, George Avgouropoulos, Vasilios Georgakilas

Published in: Journal of Materials Science | Issue 23/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, the development of a novel sulfur-doped graphene aerogel composite reinforced with carbon fibers (CFs) is presented. Sulfur is entrapped between the graphene nanosheets when GO in the presence of sodium sulfide is reduced hydrothermally to rGO forming a stable hydrogel and an aerogel after freeze-drying. The simultaneous incorporation of CFs improves the mechanical stability of the final composite. The as-prepared composite combines the characteristics of graphene aerogels such as porosity, surface area, chemical inertness with the mechanical properties of CFs and the ability of sulfur to capture lithium, thus providing a material with promising electrochemical properties for lithium-ion battery applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vrettos K, Karouta N, Loginos P, Donthula S, Gournis D, Georgakilas V (2018) The role of diamines in the formation of graphene aerogels. Front Mater 5:1–11CrossRef Vrettos K, Karouta N, Loginos P, Donthula S, Gournis D, Georgakilas V (2018) The role of diamines in the formation of graphene aerogels. Front Mater 5:1–11CrossRef
2.
go back to reference Huang J, Wang J, Yang Z, Yang S (2018) High-performance graphene sponges reinforced with polyimide for room-temperature piezoresistive sensing. ACS Appl Mater Interfaces 10:8180–8189CrossRef Huang J, Wang J, Yang Z, Yang S (2018) High-performance graphene sponges reinforced with polyimide for room-temperature piezoresistive sensing. ACS Appl Mater Interfaces 10:8180–8189CrossRef
4.
go back to reference Lu L, De Hosson JTM, Pei Y (2019) Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon 144:713–723CrossRef Lu L, De Hosson JTM, Pei Y (2019) Three-dimensional micron-porous graphene foams for lightweight current collectors of lithium-sulfur batteries. Carbon 144:713–723CrossRef
6.
go back to reference Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497CrossRef Zhang X, Sui Z, Xu B et al (2011) Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J Mater Chem 21:6494–6497CrossRef
7.
go back to reference Vineesh TV, Alwarappan S, Narayanan TN (2015) The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale 7:6504–6509CrossRef Vineesh TV, Alwarappan S, Narayanan TN (2015) The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale 7:6504–6509CrossRef
9.
go back to reference Wang S, Ning H, Hu N et al (2019) Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Compos B Eng 163:716–722CrossRef Wang S, Ning H, Hu N et al (2019) Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Compos B Eng 163:716–722CrossRef
11.
go back to reference Deerattrakul V, Yigit N, Rupprechter G, Kongkachuichay P (2019) The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol. Appl Catal A 580:46–52CrossRef Deerattrakul V, Yigit N, Rupprechter G, Kongkachuichay P (2019) The roles of nitrogen species on graphene aerogel supported Cu-Zn as efficient catalysts for CO2 hydrogenation to methanol. Appl Catal A 580:46–52CrossRef
12.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
13.
go back to reference Liu W, Wang M, Wang X, Gao Long, Zhang W, Chen J, Zhou H, Zhang X (2012) Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. J Alloy Compd 543:181–188CrossRef Liu W, Wang M, Wang X, Gao Long, Zhang W, Chen J, Zhou H, Zhang X (2012) Improvement of the high-temperature, high-voltage cycling performance of LiNi0.5Co0.2Mn0.3O2 cathode with TiO2 coating. J Alloy Compd 543:181–188CrossRef
14.
go back to reference Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) carbon nanotube aerogels. Adv Mater 19:661–664CrossRef Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) carbon nanotube aerogels. Adv Mater 19:661–664CrossRef
15.
go back to reference Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211CrossRef Yang Z, Yao Z, Li G, Fang G, Nie H, Liu Z, Zhou X, Chen X, Huang S (2012) Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 6:205–211CrossRef
16.
go back to reference Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098CrossRef Wang X, Sun G, Routh P, Kim DH, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098CrossRef
18.
go back to reference Vineesh TV, Nazrulla MA, Krishnamoorthy S, Narayanan TN, Alwarappan S (2015) Synergistic effects of dopants on the spin density of catalytic active centres of N-doped fluorinated graphene for oxygen reduction reaction. Appl Mater Today 1:74–79CrossRef Vineesh TV, Nazrulla MA, Krishnamoorthy S, Narayanan TN, Alwarappan S (2015) Synergistic effects of dopants on the spin density of catalytic active centres of N-doped fluorinated graphene for oxygen reduction reaction. Appl Mater Today 1:74–79CrossRef
20.
go back to reference Valappil OM, Alwarappan S, Narayanan TN, Tharangattu (2015) Atomic Layers in Electrochemical Biosensing Applications-Graphene and Beyond. Curr Org Chem 19:1163–1175CrossRef Valappil OM, Alwarappan S, Narayanan TN, Tharangattu (2015) Atomic Layers in Electrochemical Biosensing Applications-Graphene and Beyond. Curr Org Chem 19:1163–1175CrossRef
22.
go back to reference Chen Y, Li J, Mei T, Hu X, Liu D, Wang J, Hao M, Li J, Wang J, Wang X (2014) Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction. J Mater Chem A 2:20714–20722CrossRef Chen Y, Li J, Mei T, Hu X, Liu D, Wang J, Hao M, Li J, Wang J, Wang X (2014) Low-temperature and one-pot synthesis of sulfurized graphene nanosheets via in situ doping and their superior electrocatalytic activity for oxygen reduction reaction. J Mater Chem A 2:20714–20722CrossRef
23.
go back to reference Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nat Mater 8:500–506CrossRef Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nat Mater 8:500–506CrossRef
24.
go back to reference Xin GuSL, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wang LJ (2012) Smaller sulfur molecules promise better lithium−sulfur batterie. J Am Chem Soc 134:18510–18513CrossRef Xin GuSL, Zhao NH, Yin YX, Zhou LJ, Guo YG, Wang LJ (2012) Smaller sulfur molecules promise better lithium−sulfur batterie. J Am Chem Soc 134:18510–18513CrossRef
25.
go back to reference Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Chem Int Ed 51:3591–3595CrossRef Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF (2012) Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew Chem Chem Int Ed 51:3591–3595CrossRef
26.
go back to reference Zhang ZW, Li ZQ, Hao FB, Wang XK, Li Q, Qi YX, Fan RH, Yin LW (2014) 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv Funct Mater 24:2500–2509CrossRef Zhang ZW, Li ZQ, Hao FB, Wang XK, Li Q, Qi YX, Fan RH, Yin LW (2014) 3D interconnected porous carbon aerogels as sulfur immobilizers for sulfur impregnation for lithium-sulfur batteries with high rate capability and cycling stability. Adv Funct Mater 24:2500–2509CrossRef
27.
go back to reference Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537CrossRef Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537CrossRef
28.
go back to reference Liang CD, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21:4724–4730CrossRef Liang CD, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21:4724–4730CrossRef
29.
go back to reference Song JX, Xu T, Gordin ML, Zhu PY, Lv D (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250CrossRef Song JX, Xu T, Gordin ML, Zhu PY, Lv D (2014) Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24:1243–1250CrossRef
30.
go back to reference Zheng GY, Zhang QF, Cha JJ, Yang Y, Li WY, Seh ZW (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13:1265–1270CrossRef Zheng GY, Zhang QF, Cha JJ, Yang Y, Li WY, Seh ZW (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13:1265–1270CrossRef
31.
go back to reference Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park MS, Choi JW (2014) Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett 14:4418–4425CrossRef Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park MS, Choi JW (2014) Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium-sulfur battery. Nano Lett 14:4418–4425CrossRef
32.
go back to reference Lee KT, Black R, Yim T, Ji XL, Nazar LF (2012) Surface-initiated growth of thin oxide coatings for li–sulfur battery cathodes. Adv Energy Mater 2:1490–1496CrossRef Lee KT, Black R, Yim T, Ji XL, Nazar LF (2012) Surface-initiated growth of thin oxide coatings for li–sulfur battery cathodes. Adv Energy Mater 2:1490–1496CrossRef
34.
go back to reference Zheng SY, Yi F, Li ZP, Zhu YJ, Xu YH, Luo C, Yang JH, Wang CS (2014) Copper-stabilized sulfur microporous carbon cathodes for Li–S batteries. Adv Funct Mater 24:4156–4163CrossRef Zheng SY, Yi F, Li ZP, Zhu YJ, Xu YH, Luo C, Yang JH, Wang CS (2014) Copper-stabilized sulfur microporous carbon cathodes for Li–S batteries. Adv Funct Mater 24:4156–4163CrossRef
35.
go back to reference Ma X, Ning G, Sun Y, Pu Y, Gao J (2014) High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79:310–320CrossRef Ma X, Ning G, Sun Y, Pu Y, Gao J (2014) High capacity Li storage in sulfur and nitrogen dual-doped graphene networks. Carbon 79:310–320CrossRef
36.
go back to reference Yan Y, Yin YX, Xin S, Guoand YG, Wan LJ (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem Commun 48:10663–10665CrossRef Yan Y, Yin YX, Xin S, Guoand YG, Wan LJ (2012) Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries. Chem Commun 48:10663–10665CrossRef
37.
go back to reference Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsaure. Ber Dtsch Chem Ges 31:1481–1487CrossRef Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsaure. Ber Dtsch Chem Ges 31:1481–1487CrossRef
38.
go back to reference Antonelou A, Sygellou L, Vrettos K, Georgakilas V, Yannopoulos SN (2018) Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139:492–499CrossRef Antonelou A, Sygellou L, Vrettos K, Georgakilas V, Yannopoulos SN (2018) Efficient defect healing and ultralow sheet resistance of laser-assisted reduced graphene oxide at ambient conditions. Carbon 139:492–499CrossRef
39.
go back to reference Vrettos K, Georgakilas V (2019) Graphene aerogel growth on functionalized carbon fibers. 2020 Molecules (submitted) Vrettos K, Georgakilas V (2019) Graphene aerogel growth on functionalized carbon fibers. 2020 Molecules (submitted)
40.
go back to reference García-Bordejé E, Victor-Román S, Sanahuja-Parejo O, Benito AM, Maser WK (2018) Control of microstructure and surface chemistry of graphene aerogels via pH and time manipulation in hydrothermal method. Nanoscale 10:3526–3539CrossRef García-Bordejé E, Victor-Román S, Sanahuja-Parejo O, Benito AM, Maser WK (2018) Control of microstructure and surface chemistry of graphene aerogels via pH and time manipulation in hydrothermal method. Nanoscale 10:3526–3539CrossRef
41.
go back to reference Muzyka R, Drewniak S, Pustelny T, Chrubasik M, Gryglewicz G (2018) Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using raman spectroscopy. Materials 11:1050. https://doi.org/10.3390/ma11071050 CrossRef Muzyka R, Drewniak S, Pustelny T, Chrubasik M, Gryglewicz G (2018) Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using raman spectroscopy. Materials 11:1050. https://​doi.​org/​10.​3390/​ma11071050 CrossRef
43.
go back to reference Zhao Y, Zhang C, Liu T, Fan R, Sun Y, Tao H, Xue J (2017) Temperature greensynthesisof sulfur-nitrogen codoped graphene as efficient metal-free catalysts for oxygen reduction reaction. Int J Electrochem Sci 12:3537–3548CrossRef Zhao Y, Zhang C, Liu T, Fan R, Sun Y, Tao H, Xue J (2017) Temperature greensynthesisof sulfur-nitrogen codoped graphene as efficient metal-free catalysts for oxygen reduction reaction. Int J Electrochem Sci 12:3537–3548CrossRef
44.
go back to reference Tian Z, Li J, Zhu G, Lu J, Wang Y, Shi Z, Xu C (2016) Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets. Phys Chem Chem Phys 18:1125–1130CrossRef Tian Z, Li J, Zhu G, Lu J, Wang Y, Shi Z, Xu C (2016) Facile synthesis of highly conductive sulfur-doped reduced graphene oxide sheets. Phys Chem Chem Phys 18:1125–1130CrossRef
45.
go back to reference Razzaq AA, Yao Y, Shah R, Qi P, Miao L, Chen M, Zhao X, Peng Y, Deng Z (2019) High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater 16:194–202CrossRef Razzaq AA, Yao Y, Shah R, Qi P, Miao L, Chen M, Zhao X, Peng Y, Deng Z (2019) High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater 16:194–202CrossRef
46.
go back to reference Xin H, Hai Y, Li D et al (2018) Coupling Mo2C@C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery. Appl Surf Sci 441:69–76CrossRef Xin H, Hai Y, Li D et al (2018) Coupling Mo2C@C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery. Appl Surf Sci 441:69–76CrossRef
47.
go back to reference Kim S, Kim SK, Sun P et al (2017) Reduced Graphene Oxide/LiI Composite Lithium Ion Battery Cathodes. Nano Lett 17:6893–6899CrossRef Kim S, Kim SK, Sun P et al (2017) Reduced Graphene Oxide/LiI Composite Lithium Ion Battery Cathodes. Nano Lett 17:6893–6899CrossRef
Metadata
Title
Sulfur-doped graphene aerogels reinforced with carbon fibers as electrode materials
Authors
Katerina Vrettos
Pinelopi Angelopoulou
Joan Papavasiliou
George Avgouropoulos
Vasilios Georgakilas
Publication date
02-02-2020
Publisher
Springer US
Published in
Journal of Materials Science / Issue 23/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04391-2

Other articles of this Issue 23/2020

Journal of Materials Science 23/2020 Go to the issue

Premium Partners