Skip to main content
Top

2019 | OriginalPaper | Chapter

6. Summary

Author : Xiaoming Chen

Published in: Massive Access for Cellular Internet of Things Theory and Technique

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter presents a summary about massive access for the cellular IoT in 5G and beyond. In particular, we discuss the theories and techniques of massive access and their applications in the cellular IoT according to the characteristics of available CSI at the BS in different scenarios. Firstly, a massive access scheme for a fixed cellular IoT where full CSI is available at the BS is designed. Especially, spatial beam and transmit power are jointly optimized according to instantaneous CSI from the perspectives of maximizing the weighted sum rate and minimizing the total power consumption, respectively. Then, a low-mobility cellular IoT operated in FDD mode that partial CSI is obtained through a quantization codebook is studied, and the corresponding massive access scheme is provided by optimizing the feedback resource. Furthermore, a TDD mode-based cellular IoT is considered, and a fully non-orthogonal massive access scheme is proposed. To exploit the benefits of fully non-orthogonal massive access, the transmit power at both the BS and IoT devices is optimized. Finally, to satisfy the requirement of high mobility, a non-orthogonal beamspace massive access scheme is given, which can achieve a better spectral efficiency over fast-varying fading channels. Moreover, we analyze the challenging issues in the existing massive access schemes, and point out the future research directions for further improving the overall performance of the cellular IoT.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, L. Ladid, Internet of things in the 5G era: enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)CrossRef M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, L. Ladid, Internet of things in the 5G era: enablers, architecture, and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)CrossRef
2.
go back to reference M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Survs. Tuts 18(3), 1617–1655 (2016)CrossRef M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Survs. Tuts 18(3), 1617–1655 (2016)CrossRef
3.
go back to reference G. Durisi, T. Koch, P. Popovski, Toward massive, ultrareliable, and low-latency wireless communication with short packet. Proc. IEEE 104(9), 1711–1726 (2016)CrossRef G. Durisi, T. Koch, P. Popovski, Toward massive, ultrareliable, and low-latency wireless communication with short packet. Proc. IEEE 104(9), 1711–1726 (2016)CrossRef
4.
go back to reference C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic, P. Popovski, A. Dekorsy, Massive machine-type communications in 5G: physical and MAC-lay solutions. IEEE Commun. Mag. 54(9), 59–65 (2016)CrossRef C. Bockelmann, N. Pratas, H. Nikopour, K. Au, T. Svensson, C. Stefanovic, P. Popovski, A. Dekorsy, Massive machine-type communications in 5G: physical and MAC-lay solutions. IEEE Commun. Mag. 54(9), 59–65 (2016)CrossRef
5.
go back to reference J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRef J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C.K. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRef
6.
go back to reference C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRef C.-X. Wang, F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, H.M. Aggoune, H. Haas, S. Fletcher, E. Hepsaydir, Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag. 52(2), 122–130 (2014)CrossRef
7.
go back to reference V.W.S. Wong, R. Schober, D.W.K. Ng, L.-C. Wang, Key Technologies for 5G Wireless Systems (Cambridge University Press, Cambridge, 2017)CrossRef V.W.S. Wong, R. Schober, D.W.K. Ng, L.-C. Wang, Key Technologies for 5G Wireless Systems (Cambridge University Press, Cambridge, 2017)CrossRef
8.
go back to reference T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)CrossRef T.S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G.N. Wong, J.K. Schulz, M. Samimi, F. Gutierrez, Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)CrossRef
9.
go back to reference W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRef W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, F. Aryanfar, Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRef
10.
go back to reference S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, H.-Y. Wei, 5G new radio: waveform, frame structure, multiple access, and initial access. IEEE Commun. Mag. 55(6), 64–71 (2017)CrossRef S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, H.-Y. Wei, 5G new radio: waveform, frame structure, multiple access, and initial access. IEEE Commun. Mag. 55(6), 64–71 (2017)CrossRef
11.
go back to reference B. Farhang-Boroujeny, H. Moradi, OFDM inspired waveforms for 5G. IEEE Commun. Survs. Tuts. 18(4), 2474–2492 (2016)CrossRef B. Farhang-Boroujeny, H. Moradi, OFDM inspired waveforms for 5G. IEEE Commun. Survs. Tuts. 18(4), 2474–2492 (2016)CrossRef
12.
go back to reference P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the Internet of things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRef P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the Internet of things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRef
13.
go back to reference X. Chen, Z. Zhang, H.-H. Chen, H. Zhang, Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag. 53(4), 133–141 (2015)CrossRef X. Chen, Z. Zhang, H.-H. Chen, H. Zhang, Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag. 53(4), 133–141 (2015)CrossRef
14.
go back to reference D. Mishra, G.C. Alexandropoulos, S. De, Energy sustainable IoT with individual QoS constraints through MISO SWIPT multicasting. IEEE Internet Things J. 5(4), 2856–2867 (2018)CrossRef D. Mishra, G.C. Alexandropoulos, S. De, Energy sustainable IoT with individual QoS constraints through MISO SWIPT multicasting. IEEE Internet Things J. 5(4), 2856–2867 (2018)CrossRef
15.
go back to reference C. Zhong, X. Chen, Z. Zhang, G. Karagiannidis, Wireless powered communications: performance analysis and optimization. IEEE Trans. Commun. 63(12), 5178–5190 (2015)CrossRef C. Zhong, X. Chen, Z. Zhang, G. Karagiannidis, Wireless powered communications: performance analysis and optimization. IEEE Trans. Commun. 63(12), 5178–5190 (2015)CrossRef
16.
go back to reference X. Chen, C. Yuen, Z. Zhang, Wireless energy and information transfer tradeoff for limited feedback multi-antenna systems with energy beamforming. IEEE Trans. Veh. Technol. 63(1), 407–412 (2014)CrossRef X. Chen, C. Yuen, Z. Zhang, Wireless energy and information transfer tradeoff for limited feedback multi-antenna systems with energy beamforming. IEEE Trans. Veh. Technol. 63(1), 407–412 (2014)CrossRef
17.
go back to reference X. Chen, X. Wang, X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wirel. Commun. Lett. 2(6), 667–670 (2013)CrossRef X. Chen, X. Wang, X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wirel. Commun. Lett. 2(6), 667–670 (2013)CrossRef
18.
go back to reference J. Granjal, E. Monteiro, J.S. Silva, Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Survs. Tuts. 17(3), 1294–1312 (2015)CrossRef J. Granjal, E. Monteiro, J.S. Silva, Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Survs. Tuts. 17(3), 1294–1312 (2015)CrossRef
19.
go back to reference S.L. Keoh, S.S. Kumar, H. Tschofenig, Securing the Internet of things: a standardization perspective. IEEE Internet Things J. 1(3), 265–275 (2014)CrossRef S.L. Keoh, S.S. Kumar, H. Tschofenig, Securing the Internet of things: a standardization perspective. IEEE Internet Things J. 1(3), 265–275 (2014)CrossRef
20.
go back to reference X. Chen, H.-H. Chen, Physical layer security in multi-cell MISO downlink with incomplete CSI-A unified secrecy performance analysis. IEEE Trans. Signal Process. 62(23), 6286–6297 (2014)MathSciNetCrossRef X. Chen, H.-H. Chen, Physical layer security in multi-cell MISO downlink with incomplete CSI-A unified secrecy performance analysis. IEEE Trans. Signal Process. 62(23), 6286–6297 (2014)MathSciNetCrossRef
21.
go back to reference Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, X. Gao, A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 36(4), 679–695 (2018)CrossRef Y. Wu, A. Khisti, C. Xiao, G. Caire, K.-K. Wong, X. Gao, A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 36(4), 679–695 (2018)CrossRef
22.
go back to reference X. Chen, L. Lei, H. Zhang, C. Yuen, Large-scale MIMO relaying techniques for physical layer security: AF or DF? IEEE Trans. Wirel. Commun. 14(9), 5135–5146 (2015)CrossRef X. Chen, L. Lei, H. Zhang, C. Yuen, Large-scale MIMO relaying techniques for physical layer security: AF or DF? IEEE Trans. Wirel. Commun. 14(9), 5135–5146 (2015)CrossRef
23.
go back to reference X. Chen, D.W.K. Ng, W. Gerstacker, H.-H. Chen, A survey on multiple-antenna techniques for physical layer security. IEEE Commun. Survs. Tuts. 19(2), 1027–1053 (2017)CrossRef X. Chen, D.W.K. Ng, W. Gerstacker, H.-H. Chen, A survey on multiple-antenna techniques for physical layer security. IEEE Commun. Survs. Tuts. 19(2), 1027–1053 (2017)CrossRef
24.
go back to reference L. Liu, W. Yu, Massive connectivity with massive MIMO-part I: device activity detection and channel estimation. IEEE Trans. Signal Process. 66(11), 2933–2946 (2018)MathSciNetCrossRef L. Liu, W. Yu, Massive connectivity with massive MIMO-part I: device activity detection and channel estimation. IEEE Trans. Signal Process. 66(11), 2933–2946 (2018)MathSciNetCrossRef
25.
go back to reference Z. Chen, F. Sohrabi, W. Yu, Sparse activity detection for massive connectivity. IEEE Trans. Signal Process. 66(7), 1890–1904 (2018)MathSciNetCrossRef Z. Chen, F. Sohrabi, W. Yu, Sparse activity detection for massive connectivity. IEEE Trans. Signal Process. 66(7), 1890–1904 (2018)MathSciNetCrossRef
Metadata
Title
Summary
Author
Xiaoming Chen
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-6597-3_6