Skip to main content
Top
Published in: Journal of Materials Science 8/2017

02-01-2017 | Original Paper

Super-tough hydrogels from shape-memory polyurethane with wide-adjustable mechanical properties

Authors: Feng Wu, Lei Chen, Yangling Li, Ka I Lee, Bin Fei

Published in: Journal of Materials Science | Issue 8/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Recoverable hydrogels with high strength and toughness have been fabricated from hydrophilic and thermoplastic polyurethane (HTPU), which chains consist of hydrophilic polyethylene glycol (PEG) segment of high crystallinity and hydrophobic segment with strong hydrogen-bonding groups. This HTPU absorbed high amount of water, during which the PEG crystals swollen and dissolved, while the hydrophobic segments still held the adjacent chains together, forming a stable hydrogel. Even at equilibrium swelling state (89 wt% water), the HTPU hydrogel exhibited high modulus (0.4 MPa), high strength (2.6 MPa), and large strain at break (~500%). The effect of water content on the tensile properties of HTPU hydrogels was carefully studied at different levels of swelling. Interestingly, the hydrogels demonstrated a transition from a typical tough plastic to a tough elastomer when the water content reached 35 wt% of the hydrogel, with breaking strength of 10.0 MPa and fracture energy of 59.7 MJ/m3 at maximum strain over 1600%. The results from differential scanning calorimetry, Fourier transform infrared spectroscopy, and microscope measurements showed that the wide adjustability of this HTPU mechanical property was a result of the changes in its crystallinity, hydrogen-bonding, and hydrophobic association. Furthermore, the shape-memory performance of the HTPU was studied with heat and water stimuli and found faster at heating to 70 °C than that by immersion in water: 10 s versus 10 min. This study may widen the application of HTPU biodegradable polymers and provide new frontiers for the design of tough hydrogels by network structure control.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Malda J, Visser J, Melchels FP et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028CrossRef Malda J, Visser J, Melchels FP et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028CrossRef
2.
3.
go back to reference Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310. doi:10.1007/s10853-015-9382-5 CrossRef Utech S, Boccaccini AR (2016) A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 51:271–310. doi:10.​1007/​s10853-015-9382-5 CrossRef
4.
go back to reference Annabi N, Tamayol A, Uquillas JA et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124CrossRef Annabi N, Tamayol A, Uquillas JA et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124CrossRef
5.
go back to reference Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719CrossRef Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37:1678–1719CrossRef
6.
go back to reference Corkhill PH, Hamilton CJ, Tighe BJ (1989) Synthetic hydrogels VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 10:3–10CrossRef Corkhill PH, Hamilton CJ, Tighe BJ (1989) Synthetic hydrogels VI. Hydrogel composites as wound dressings and implant materials. Biomaterials 10:3–10CrossRef
7.
go back to reference Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. radiation-induced crosslinking of CMC. J Appl Polym Sci 78:278–283CrossRef Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. radiation-induced crosslinking of CMC. J Appl Polym Sci 78:278–283CrossRef
8.
go back to reference Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef
9.
10.
go back to reference Bin Imran A, Esaki K, Gotoh H et al (2014) Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 5(5124):1–8 Bin Imran A, Esaki K, Gotoh H et al (2014) Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network. Nat Commun 5(5124):1–8
11.
go back to reference Hao X, Zhou W, Yao R, Xie Y, ur Rehman S, Yang H (2013) A new class of thermo-switchable hydrogel: application to the host–guest approach. J Mater Chem A 1:14612–14617CrossRef Hao X, Zhou W, Yao R, Xie Y, ur Rehman S, Yang H (2013) A new class of thermo-switchable hydrogel: application to the host–guest approach. J Mater Chem A 1:14612–14617CrossRef
12.
go back to reference Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRef Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124CrossRef
13.
go back to reference Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRef Gaharwar AK, Dammu SA, Canter JM, Wu C-J, Schmidt G (2011) Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles. Biomacromolecules 12:1641–1650CrossRef
14.
go back to reference Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158CrossRef
15.
go back to reference Sun J-Y, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRef Sun J-Y, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136CrossRef
16.
go back to reference Lu X, Chan CY, Lee KI et al (2014) Super-tough and thermo-healable hydrogel—promising for shape-memory absorbent fiber. J Mater Chem B 2:7631–7638CrossRef Lu X, Chan CY, Lee KI et al (2014) Super-tough and thermo-healable hydrogel—promising for shape-memory absorbent fiber. J Mater Chem B 2:7631–7638CrossRef
17.
go back to reference Zhang HJ, Sun TL, Zhang AK et al (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28:4884–4890CrossRef Zhang HJ, Sun TL, Zhang AK et al (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28:4884–4890CrossRef
18.
go back to reference Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW (2014) Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc 136:6969–6977CrossRef Guo M, Pitet LM, Wyss HM, Vos M, Dankers PYW, Meijer EW (2014) Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. J Am Chem Soc 136:6969–6977CrossRef
19.
go back to reference Hu J, Meng H, Li G, Ibekwe SI (2015) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(053001):1–24 Hu J, Meng H, Li G, Ibekwe SI (2015) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21(053001):1–24
20.
go back to reference Abraham GA, Basu A, Battiston KG et al (2015) Advances in polyurethane biomaterials. Woodhead Publishing, Elsevier Abraham GA, Basu A, Battiston KG et al (2015) Advances in polyurethane biomaterials. Woodhead Publishing, Elsevier
21.
go back to reference Yoo H-J, Kim H-D (2008) Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B 85B:326–333CrossRef Yoo H-J, Kim H-D (2008) Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B 85B:326–333CrossRef
22.
go back to reference Naficy S, Spinks GM, Wallace GG (2014) Thin, tough, pH-sensitive hydrogel films with rapid load recovery. ACS Appl Mater Interfaces 6:4109–4114CrossRef Naficy S, Spinks GM, Wallace GG (2014) Thin, tough, pH-sensitive hydrogel films with rapid load recovery. ACS Appl Mater Interfaces 6:4109–4114CrossRef
23.
go back to reference Tanaka T (1986) Kinetics of phase transition in polymer gels. Physica 140A:261–268CrossRef Tanaka T (1986) Kinetics of phase transition in polymer gels. Physica 140A:261–268CrossRef
24.
go back to reference Li Y, Tanaka T (1992) Phase transitions of gels. Annu Rev Mater Sci 22:243–277CrossRef Li Y, Tanaka T (1992) Phase transitions of gels. Annu Rev Mater Sci 22:243–277CrossRef
25.
go back to reference Itagaki H, Kurokawa T, Furukawa H, Nakajima T, Katsumoto Y, Gong JP (2010) Water-induced brittle-ductile transition of double network hydrogels. Macromolecules 43:9495–9500CrossRef Itagaki H, Kurokawa T, Furukawa H, Nakajima T, Katsumoto Y, Gong JP (2010) Water-induced brittle-ductile transition of double network hydrogels. Macromolecules 43:9495–9500CrossRef
26.
go back to reference Ahmed S, Nakajima T, Kurokawa T, Anamul Haque M, Gong JP (2014) Brittle–ductile transition of double network hydrogels: mechanical balance of two networks as the key factor. Polymer 55:914–923CrossRef Ahmed S, Nakajima T, Kurokawa T, Anamul Haque M, Gong JP (2014) Brittle–ductile transition of double network hydrogels: mechanical balance of two networks as the key factor. Polymer 55:914–923CrossRef
27.
go back to reference Stauffer SR, Peppast NA (1992) Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33:3932–3936CrossRef Stauffer SR, Peppast NA (1992) Poly (vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33:3932–3936CrossRef
28.
go back to reference Mori Y, Tokura H, Yoshikawa M (1997) Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications. J Mater Sci 32:491–496. doi:10.1023/A:1018586307534 CrossRef Mori Y, Tokura H, Yoshikawa M (1997) Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications. J Mater Sci 32:491–496. doi:10.​1023/​A:​1018586307534 CrossRef
29.
go back to reference SB Majee (2016) Emerging concepts in analysis and applications of hydrogels. InTech SB Majee (2016) Emerging concepts in analysis and applications of hydrogels. InTech
31.
go back to reference Qiu W, Wunderlich B (2006) Reversible melting of high molar mass poly(oxyethylene). Thermochim Acta 448:136–146CrossRef Qiu W, Wunderlich B (2006) Reversible melting of high molar mass poly(oxyethylene). Thermochim Acta 448:136–146CrossRef
32.
go back to reference Wang X, Hu H, Yang Z, He L, Kong Y, Fei B, Xin JH (2014) Smart hydrogel-functionalized textile system with moisture management property for skin application. Smart Mater Struct 23(125027):1–10 Wang X, Hu H, Yang Z, He L, Kong Y, Fei B, Xin JH (2014) Smart hydrogel-functionalized textile system with moisture management property for skin application. Smart Mater Struct 23(125027):1–10
33.
go back to reference Kolhe P, Kannan RM (2003) Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4:173–180CrossRef Kolhe P, Kannan RM (2003) Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4:173–180CrossRef
34.
go back to reference Ping ZH, Nguyen QT, Chen SM, Zhou JQ, Ding YD (2001) States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 42:8461–8467CrossRef Ping ZH, Nguyen QT, Chen SM, Zhou JQ, Ding YD (2001) States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 42:8461–8467CrossRef
35.
go back to reference Fei B, Chen C, Wu H, Peng S, Wang X, Dong L, Xin JH (2004) Modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using hydrogen bonding monomers. Polymer 45:6275–6284CrossRef Fei B, Chen C, Wu H, Peng S, Wang X, Dong L, Xin JH (2004) Modified poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using hydrogen bonding monomers. Polymer 45:6275–6284CrossRef
36.
go back to reference Fei B, Chen C, Wu H, Peng S, Wang X, Dong L (2003) Quantitative FTIR study of PHBV/bisphenol A blends. Eur Polymer J 39:1939–1946CrossRef Fei B, Chen C, Wu H, Peng S, Wang X, Dong L (2003) Quantitative FTIR study of PHBV/bisphenol A blends. Eur Polymer J 39:1939–1946CrossRef
37.
go back to reference Argon AS (2013) The physics of deformation and fracture of polymers. Cambridge University Press, CambridgeCrossRef Argon AS (2013) The physics of deformation and fracture of polymers. Cambridge University Press, CambridgeCrossRef
38.
go back to reference Liu J, Chen C, He C, Zhao J, Yang X, Wang H (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202CrossRef Liu J, Chen C, He C, Zhao J, Yang X, Wang H (2012) Synthesis of graphene peroxide and its application in fabricating super extensible and highly resilient nanocomposite hydrogels. ACS Nano 6:8194–8202CrossRef
39.
go back to reference Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26:5950–5956CrossRef Hu Z, Chen G (2014) Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv Mater 26:5950–5956CrossRef
40.
go back to reference Hu Y, Du Z, Deng X et al (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668CrossRef Hu Y, Du Z, Deng X et al (2016) Dual physically cross-linked hydrogels with high stretchability, toughness, and good self-recoverability. Macromolecules 49:5660–5668CrossRef
41.
go back to reference Nakajima T, Sato H, Zhao Y et al (2012) A universal molecular stent method to toughen any hydrogels based on double network concept. Adv Funct Mater 22:4426–4432CrossRef Nakajima T, Sato H, Zhao Y et al (2012) A universal molecular stent method to toughen any hydrogels based on double network concept. Adv Funct Mater 22:4426–4432CrossRef
42.
go back to reference Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25:4171–4176CrossRef Chen Q, Zhu L, Zhao C, Wang Q, Zheng J (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25:4171–4176CrossRef
43.
go back to reference Luo F, Sun TL, Nakajima T et al (2015) Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv Mater 27:2722–2727CrossRef Luo F, Sun TL, Nakajima T et al (2015) Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv Mater 27:2722–2727CrossRef
44.
go back to reference Jeon I, Cui J, Illeperuma WRK, Aizenberg J, Vlassak JJ (2016) Extremely stretchable and fast self-healing hydrogels. Adv Mater 28:4678–4683CrossRef Jeon I, Cui J, Illeperuma WRK, Aizenberg J, Vlassak JJ (2016) Extremely stretchable and fast self-healing hydrogels. Adv Mater 28:4678–4683CrossRef
45.
go back to reference You J, Xie S, Cao J et al (2016) Quaternized chitosan/poly(acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties. Macromolecules 49:1049–1059CrossRef You J, Xie S, Cao J et al (2016) Quaternized chitosan/poly(acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties. Macromolecules 49:1049–1059CrossRef
46.
go back to reference Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059CrossRef Lin P, Ma S, Wang X, Zhou F (2015) Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery. Adv Mater 27:2054–2059CrossRef
47.
go back to reference Galeski A, Argon AS, Cohen RE (1988) Changes in the morphology of bulk spherulitic nylon 6 due to plastic deformation. Macromolecules 21:2761–2770CrossRef Galeski A, Argon AS, Cohen RE (1988) Changes in the morphology of bulk spherulitic nylon 6 due to plastic deformation. Macromolecules 21:2761–2770CrossRef
48.
go back to reference Akagi Y, Gong JP, Chung UI, Sakai T (2013) Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules 46:1035–1040CrossRef Akagi Y, Gong JP, Chung UI, Sakai T (2013) Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules 46:1035–1040CrossRef
49.
go back to reference Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025CrossRef Naficy S, Brown HR, Razal JM, Spinks GM, Whitten PG (2011) Progress toward robust polymer hydrogels. Aust J Chem 64:1007–1025CrossRef
50.
go back to reference Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763CrossRef Hu J, Zhu Y, Huang H, Lu J (2012) Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications. Prog Polym Sci 37:1720–1763CrossRef
51.
go back to reference Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRef Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492CrossRef
Metadata
Title
Super-tough hydrogels from shape-memory polyurethane with wide-adjustable mechanical properties
Authors
Feng Wu
Lei Chen
Yangling Li
Ka I Lee
Bin Fei
Publication date
02-01-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 8/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0689-7

Other articles of this Issue 8/2017

Journal of Materials Science 8/2017 Go to the issue

Premium Partners