Skip to main content
Top
Published in: Journal of Materials Science 16/2017

03-05-2017 | Biomaterials

Superparamagnetic nanohybrids with cross-linked polymers providing higher in vitro stability

Authors: Weerakanya Maneeprakorn, Lionel Maurizi, Hathainan Siriket, Tuksadon Wutikhun, Tararaj Dharakul, Heinrich Hofmann

Published in: Journal of Materials Science | Issue 16/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A simple, rapid, reproducible, and scalable method for generating highly stable cross-linked superparamagnetic nanohybrids was developed. Pre-coating of superparamagnetic iron oxide nanoparticle surfaces with a biocompatible polymer, hydroxy polyvinyl alcohol (PVA-OH) prior to cross-linking with silica precursor resulted in improved stability, uniform morphologies and allows for further surface functionalization. The obtained magnetic nanohybrids contain a non-porous silica layer, are monodisperse (size 50.0 ± 3.7 nm), and show colloidal stability applicable for biomedical applications (pH 7.35–7.45) with long shelf life (>9 months). In vitro studies indicate that as-prepared nanohybrids are non-cytotoxic and highly robust toward endosomal/lysosomal conditions, with no particle dissolution evident for up to 42 days. As a demonstration of the potential utility of these nanohybrids in medical diagnostic applications (e.g., MRI), surface functionalization with folic acid resulted in particle recognition and affinity to folate receptor-positive cervix (HeLa) cells. Accordingly, the facile development of these non-toxic, stable cross-linked magnetic nanohybrids, with the added benefit of scalable preparation, should serve as an entry point for the further development of safer, target specific, MRI contrast agents for cancer diagnosis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280CrossRef Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280CrossRef
2.
go back to reference Mahmoudi M, Serpooshan V, Laurent S (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007–3026CrossRef Mahmoudi M, Serpooshan V, Laurent S (2011) Engineered nanoparticles for biomolecular imaging. Nanoscale 3:3007–3026CrossRef
3.
go back to reference Peacock AK, Cauët SI, Taylor A, Murray P, Williams SR, Weaver JVM, Adams DJ, Rosseinsky MJ (2012) Poly[2-(methacroyloxy)ethylphosphorylcholine]-coated iron oxide nanoparticles: synthesis, colloidal stability and evaluation for stem cell labelling. Chem Commun 48:9373–9375CrossRef Peacock AK, Cauët SI, Taylor A, Murray P, Williams SR, Weaver JVM, Adams DJ, Rosseinsky MJ (2012) Poly[2-(methacroyloxy)ethylphosphorylcholine]-coated iron oxide nanoparticles: synthesis, colloidal stability and evaluation for stem cell labelling. Chem Commun 48:9373–9375CrossRef
4.
go back to reference Babič M, Horák D, Trchová M, Jendelová P, Glogarová KI, Lesný P, Herynek V, Hájek M, Syková E (2008) Poly(l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem 19:740–750CrossRef Babič M, Horák D, Trchová M, Jendelová P, Glogarová KI, Lesný P, Herynek V, Hájek M, Syková E (2008) Poly(l-lysine)-modified iron oxide nanoparticles for stem cell labeling. Bioconjugate Chem 19:740–750CrossRef
5.
go back to reference Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2:1903–1911CrossRef Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T (2010) High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces 2:1903–1911CrossRef
6.
go back to reference Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces 3:842–856CrossRef Singh A, Dilnawaz F, Mewar S, Sharma U, Jagannathan NR, Sahoo SK (2011) Composite polymeric magnetic nanoparticles for co-delivery of hydrophobic and hydrophilic anticancer drugs and MRI imaging for cancer therapy. ACS Appl Mater Interfaces 3:842–856CrossRef
7.
go back to reference Liao Z, Wang H, Lv R, Zhao P, Sun X, Wang S, Su W, Niu R, Chang J (2011) Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir 27:3100–3105CrossRef Liao Z, Wang H, Lv R, Zhao P, Sun X, Wang S, Su W, Niu R, Chang J (2011) Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells. Langmuir 27:3100–3105CrossRef
8.
go back to reference Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607–4613CrossRef Tong S, Hou S, Zheng Z, Zhou J, Bao G (2010) Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett 10:4607–4613CrossRef
9.
go back to reference Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468CrossRef Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468CrossRef
10.
go back to reference Wang XY, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331CrossRef Wang XY, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331CrossRef
11.
go back to reference Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef Wu W, He Q, Jiang C (2008) Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett 3:397–415CrossRef
12.
go back to reference Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18:383–389CrossRef Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed 18:383–389CrossRef
13.
go back to reference Hradil J, Pisarev A, Babič M, Horák D (2007) Dextran-modified iron oxide nanoparticles. China Particuology 5:162–168CrossRef Hradil J, Pisarev A, Babič M, Horák D (2007) Dextran-modified iron oxide nanoparticles. China Particuology 5:162–168CrossRef
14.
go back to reference Molday RS (1984) Magnetic iron-dextran microspheres, U.S. Patent 4,452,773 Molday RS (1984) Magnetic iron-dextran microspheres, U.S. Patent 4,452,773
15.
go back to reference Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov AJ (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjugate Chem 13:122–127CrossRef Kang HW, Josephson L, Petrovsky A, Weissleder R, Bogdanov AJ (2002) Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjugate Chem 13:122–127CrossRef
16.
go back to reference Larsen EKU, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Østergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3:1947–1951CrossRef Larsen EKU, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, Østergaard L, Horsman MR, Besenbacher F, Howard KA, Kjems J (2009) Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano 3:1947–1951CrossRef
17.
go back to reference Saifer MGP, Williams LD, Sobczyk MA, Michaels SJ, Sherman MR (2014) Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol Immunol 57:236–246CrossRef Saifer MGP, Williams LD, Sobczyk MA, Michaels SJ, Sherman MR (2014) Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol Immunol 57:236–246CrossRef
18.
go back to reference Valdes-Solıs T, Rebolledo AF, Sevilla M, Valle-Vigon P, Bomatí-Miguel O, Fuertes AB, Tartaj P (2009) Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem Mater 21:1806–1814CrossRef Valdes-Solıs T, Rebolledo AF, Sevilla M, Valle-Vigon P, Bomatí-Miguel O, Fuertes AB, Tartaj P (2009) Preparation, characterization, and enzyme immobilization capacities of superparamagnetic silica/iron oxide nanocomposites with mesostructured porosity. Chem Mater 21:1806–1814CrossRef
19.
go back to reference Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoff P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F (2015) Effects of PVA coated nanoparticles on human immune cells. Int J Nanomed 10:3429–3445CrossRef Strehl C, Gaber T, Maurizi L, Hahne M, Rauch R, Hoff P, Häupl T, Hofmann-Amtenbrink M, Poole AR, Hofmann H, Buttgereit F (2015) Effects of PVA coated nanoparticles on human immune cells. Int J Nanomed 10:3429–3445CrossRef
20.
go back to reference Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9CrossRef Bee A, Massart R, Neveu S (1995) Synthesis of very fine maghemite particles. J Magn Magn Mater 149:6–9CrossRef
21.
go back to reference Mahmoudi M, Simchi A, Imani M (2009) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580CrossRef Mahmoudi M, Simchi A, Imani M (2009) Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. J Phys Chem C 113:9573–9580CrossRef
22.
go back to reference Zhou L, He B, Zhang F (2012) Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces 4:192–199CrossRef Zhou L, He B, Zhang F (2012) Facile one-pot synthesis of iron oxide nanoparticles cross-linked magnetic poly(vinyl alcohol) gel beads for drug delivery. ACS Appl Mater Interfaces 4:192–199CrossRef
23.
go back to reference Schulze F, Dienelt A, Geissler S, Zaslansky P, Schoon J, Henzler K, Guttmann P, Gramoun A, Crowe LA, Maurizi L, Vallée JP, Hofmann H, Duda GN, Ode A (2014) Amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles are suitable for monitoring of human mesenchymal stromal cells in vivo. Small 10:4340–4351 Schulze F, Dienelt A, Geissler S, Zaslansky P, Schoon J, Henzler K, Guttmann P, Gramoun A, Crowe LA, Maurizi L, Vallée JP, Hofmann H, Duda GN, Ode A (2014) Amino-polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles are suitable for monitoring of human mesenchymal stromal cells in vivo. Small 10:4340–4351
24.
go back to reference Schulze F, Gramoun A, Crowe LA, Dienelt A, Akcan T, Hofmann H, Vallée JP, Duda GN, Ode A (2015) Accumulation of amino-polyvinyl alcohol-coated superparamagnetic iron oxide nanoparticles in bone marrow: implications for local stromal cells. Nanomedicine 10:2139–2151CrossRef Schulze F, Gramoun A, Crowe LA, Dienelt A, Akcan T, Hofmann H, Vallée JP, Duda GN, Ode A (2015) Accumulation of amino-polyvinyl alcohol-coated superparamagnetic iron oxide nanoparticles in bone marrow: implications for local stromal cells. Nanomedicine 10:2139–2151CrossRef
25.
go back to reference Ahmad T, Bae H, Rhee I, Chang Y, Lee J, Hong S (2012) Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr Appl Phys 12:969–974CrossRef Ahmad T, Bae H, Rhee I, Chang Y, Lee J, Hong S (2012) Particle size dependence of relaxivity for silica-coated iron oxide nanoparticles. Curr Appl Phys 12:969–974CrossRef
26.
go back to reference Kralj S, Makovec D, Čampelj S, Drofenik M (2009) Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J Magn Magn Mater 322:1847–1853CrossRef Kralj S, Makovec D, Čampelj S, Drofenik M (2009) Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J Magn Magn Mater 322:1847–1853CrossRef
27.
go back to reference Liu Q, Finch JA, Egerton R (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 10:3936–3940CrossRef Liu Q, Finch JA, Egerton R (1998) A novel two-step silica-coating process for engineering magnetic nanocomposites. Chem Mater 10:3936–3940CrossRef
28.
go back to reference Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao HT (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701–705CrossRef Hui C, Shen C, Tian J, Bao L, Ding H, Li C, Tian Y, Shi X, Gao HT (2011) Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 3:701–705CrossRef
29.
go back to reference Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaría J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23:155603CrossRef Roca AG, Carmona D, Miguel-Sancho N, Bomati-Miguel O, Balas F, Piquer C, Santamaría J (2012) Surface functionalization for tailoring the aggregation and magnetic behaviour of silica-coated iron oxide nanostructures. Nanotechnology 23:155603CrossRef
30.
go back to reference Iqbal MS, Ma X, Chen T, Zhang L, Ren W, Xiang L, Wu A (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T1 magnetic resonance imaging (MRI). J Mater Chem B 3:5172–5181CrossRef Iqbal MS, Ma X, Chen T, Zhang L, Ren W, Xiang L, Wu A (2015) Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T1 magnetic resonance imaging (MRI). J Mater Chem B 3:5172–5181CrossRef
31.
go back to reference Ding HL, Zhang XY, Wang S, Xu JM, Su SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580CrossRef Ding HL, Zhang XY, Wang S, Xu JM, Su SC, Li GH (2012) Fe3O4@SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chem Mater 24:4572–4580CrossRef
32.
go back to reference Tartaj P, González-Carreño T, Serna CJ (2001) Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv Mater 13:1620–1624CrossRef Tartaj P, González-Carreño T, Serna CJ (2001) Single-step nanoengineering of silica coated maghemite hollow spheres with tunable magnetic properties. Adv Mater 13:1620–1624CrossRef
33.
go back to reference Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stöber synthesis. Langmuir 21:7524–7527CrossRef Barnakov YA, Yu MH, Rosenzweig Z (2005) Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled Stöber synthesis. Langmuir 21:7524–7527CrossRef
35.
go back to reference Maurizi L, Sakulkhu U, Crowe LA, Dao VM, Leclaire N, Vallée JP, Hofmann H (2014) Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties. RSC Adv 4:11142–11146CrossRef Maurizi L, Sakulkhu U, Crowe LA, Dao VM, Leclaire N, Vallée JP, Hofmann H (2014) Syntheses of cross-linked polymeric superparamagnetic beads with tunable properties. RSC Adv 4:11142–11146CrossRef
36.
go back to reference Maurizi L, Claveau A, Hofmann H (2015) Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation. J Nanomater. doi:10.1155/2015/732719 Maurizi L, Claveau A, Hofmann H (2015) Polymer adsorption on iron oxide nanoparticles for one-step amino-functionalized silica encapsulation. J Nanomater. doi:10.​1155/​2015/​732719
37.
go back to reference Chastellain M, Petri A, Hofmann H (2004) Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J Colloid Interface Sci 278:353–360CrossRef Chastellain M, Petri A, Hofmann H (2004) Particle size investigations of a multistep synthesis of PVA coated superparamagnetic nanoparticles. J Colloid Interface Sci 278:353–360CrossRef
38.
go back to reference Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16:1181–1188CrossRef Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J, Duguet E, Colombo P, Couvreur P (2005) Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem 16:1181–1188CrossRef
39.
go back to reference Yang R, An Y, Miao F, Li M, Liu P, Tang Q (2014) Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine 9:4231–4243CrossRef Yang R, An Y, Miao F, Li M, Liu P, Tang Q (2014) Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine 9:4231–4243CrossRef
40.
go back to reference Pan T, Khare S, Ackah F, Huang B, Zhang W, Gabos S, Jin C, Stampfl M (2013) In vitro cytotoxicity assessment based on KC 50 with real-time cell analyzer (RTCA) assay. Comput Biol Chem 47:113–120CrossRef Pan T, Khare S, Ackah F, Huang B, Zhang W, Gabos S, Jin C, Stampfl M (2013) In vitro cytotoxicity assessment based on KC 50 with real-time cell analyzer (RTCA) assay. Comput Biol Chem 47:113–120CrossRef
41.
go back to reference Benachour H, Bastogne T, Toussaint M, Chemli Y, Sève A, Frochot C, Lux F, Tillement O, Vanderesse R, Barberi-Heyob M (2012) Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach. PLoS ONE 7:e48617CrossRef Benachour H, Bastogne T, Toussaint M, Chemli Y, Sève A, Frochot C, Lux F, Tillement O, Vanderesse R, Barberi-Heyob M (2012) Real-time monitoring of photocytotoxicity in nanoparticles-based photodynamic therapy: a model-based approach. PLoS ONE 7:e48617CrossRef
42.
go back to reference Teng Z, Kuang X, Wang J, Zhang X (2013) Real-time cell analysis—a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. J Virol Methods 193:364–370CrossRef Teng Z, Kuang X, Wang J, Zhang X (2013) Real-time cell analysis—a new method for dynamic, quantitative measurement of infectious viruses and antiserum neutralizing activity. J Virol Methods 193:364–370CrossRef
43.
go back to reference Otero-González L, Sierra-Alvarez R, Boitana S, Field JA (2012) Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 46:10271–10278 Otero-González L, Sierra-Alvarez R, Boitana S, Field JA (2012) Application and validation of an impedance-based real time cell analyzer to measure the toxicity of nanoparticles impacting human bronchial epithelial cells. Environ Sci Technol 46:10271–10278
44.
go back to reference Skotland T, Sontum PC, Oulie I (2002) In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan.), a contrast agent for magnetic resonance imaging. J Pharm Biomed 28:323–329CrossRef Skotland T, Sontum PC, Oulie I (2002) In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan.), a contrast agent for magnetic resonance imaging. J Pharm Biomed 28:323–329CrossRef
45.
go back to reference Lévy M, Lagarde F, Maraloiu V, Blanchin M, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21:395103CrossRef Lévy M, Lagarde F, Maraloiu V, Blanchin M, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21:395103CrossRef
46.
go back to reference Malvindi MA, Matteis VD, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 9:e85835CrossRef Malvindi MA, Matteis VD, Galeone A, Brunetti V, Anyfantis GC, Athanassiou A, Cingolani R, Pompa PP (2014) Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE 9:e85835CrossRef
47.
go back to reference Majd MH, Asgari D, Barar J, Valizadeh H, Kafil V, Coukos G, Omidi Y (2013) Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J Drug Target 21:328–340CrossRef Majd MH, Asgari D, Barar J, Valizadeh H, Kafil V, Coukos G, Omidi Y (2013) Specific targeting of cancer cells by multifunctional mitoxantrone-conjugated magnetic nanoparticles. J Drug Target 21:328–340CrossRef
Metadata
Title
Superparamagnetic nanohybrids with cross-linked polymers providing higher in vitro stability
Authors
Weerakanya Maneeprakorn
Lionel Maurizi
Hathainan Siriket
Tuksadon Wutikhun
Tararaj Dharakul
Heinrich Hofmann
Publication date
03-05-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 16/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1098-2

Other articles of this Issue 16/2017

Journal of Materials Science 16/2017 Go to the issue

Premium Partners